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PREAMBLE

This CATMOG differs from most others in that it attempts to review the basic elements
of a branch of mathematics that has wide applicability to problems encountered in
geographical analysis. Several existing CATMOGs utilise matrix algebra to a greater
or lesser extent, and this introduction should give the student a good basis for tackling
more advanced topics in these and other texts. It is not possible to use a notation
that is consistent with all other users; the student will have to take care to become
familiar with that used by the authors being followed (I have changed my own use
from the rounded brackets in CATMOG 14 to the square brackets more suited to word
processing systems). Where possible I have tried to indicate different usages, and in
several cases I have taken examples from other CATMOGs to rework here in the course
of illustrating specific techniques.

I INTRODUCTION

(i) MATRIX ALGEBRA AND ITS USES

Just as algebra allows the manipulation of the entities that are usually called numbers,
so matrix algebra permits the manipulation of whole collections, or tables of, numbers:
the entities called matrices. Matrix Algebra provides a very compact way to express
large numbers of linear equations and in consequence is often termed Linear Algebra.
A virtue of matrix notation is that it is independent of the number of elements in
the matrices, and so a solution to one size of a problem is the solution of any size.
Of course the labour of solution still has to be undertaken, usually by computer, but
any size of problem has the same formal solution. It will often happen that apparently
very different problems have an identical matrix structure and so are solved by identical
methods.

Figure 1
Two crop von Thunen model

As a motivation consider a simple two-crop Thunen model (Figure 1) represented
by the simultaneous equations:
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All the summation terms and N are known and so the problem is written in matrix

where the y's represent the net profits after the deduction of all the 'on the farm'
costs and the cost of transporting the crop x miles to market at the rate per mile
given by the coefficient attaching to the x. We would like to know the distance to
the point at which the crops have identical profits, where both equations are
simultaneously true. First rearrange the equations to get:

The coefficients (the numbers) in these equations can be written as follows, if the
positions of y and x are taken as understood:

Notice that the + signs attach merely to the numbers, they don't combine them as
'operators as they did in the equation form. Usually we will leave + signs as blanks.
To indicate that the y and x have to be combined with these numbers in a regular
way the whole problem is now written in this fashion in matrix algebra:

where in the expanded version each set of large brackets is a matrix. In a short
notation [s], [A] and [x] stand for the three different sets of brackets. Thejuxtaposition
of [A] and [x] implies, as in ordinaryalgebra, the operation of multiplication although
of course following the formalities of matrix algebra such that equation (2) is
reconstituted.

Now suppose that we solve [s) = [A][x]  by the usual formalities of algebra, then
we should obtain [x] = [1/[A]][s] where we assume at the moment that [1/[A]] is the
reciprocal of CA] and is not equivalent to 0. An interesting feature of equation (3)
is that the expression is clearly separated into knowns, Is] and CA), and the unknowns,
x]. The term x]. on solution, will contain the intersection coordinates of the two
lines specified by the original problem, equation (1). By reference to (1) we see that
Cs] contains the net profit obtainable at the market before the subtraction of the
transport costs. Since CA] remains fixed, once we have it we can examine changes in
x] as a function of changes in the net profit as the market price fluctuates. This
is a lot more convenient than solving the entire equation set from scratch, which
is what we should have to do using the methods of ordinary algebra. The solution
for this problem is discussed in VI(i)a and the inverse is given numerically in IV(iv)d.

An identical formal solution applies to solving the classical least squares Normal
Equations. These equations arise from the problem of finding the best fitting line
to a scatter of points in a bi-variate plot, Figure 2. The equations are composed of
various sums constituted from the original data; the x's and y's which define the points
in the scatter plot; full details are given in VI(i)b below. The equations are:

with, as before, the solution [t)] = [1/00][y], and CIA contains both a and b, respectively
the intercept and slope of the best fitting line. We shall have to show that some
such object as [1/[X] ] exists, and how to calculate it, but assuming that it does exist
(and for sensible problems it does) then matrix notation shows how a very compact
solution can be written, and how it will apply however many terms there are in the
Normal Equations.

Another advantage of the inverse method is that it may be seen that it only
contains products of x, and the term N in the top left-hand corner. Consequently
to solve the problem for another set of y values just requires a simple operation,
not the complete solution all over again. This is very convenient where a problem
is repeated many times, say in the production of cubic trend surfaces of monthly rainfall
totals for the same set of rainfall stations; in effect it takes advantage of the fact
that the spatial location of the stations doesn't change.

As a final informal example consider the movement of flood water through a
stream network caricatured as a series of connected nodes, such as is illustrated in
Figure 3(a). In one time period the amount of water at a node, let us say from a
storm of short duration, moves downstream to the next node. With some effort we can
calculate the distribution of the water in the stream network by tracing the various
paths and keeping track of the total amount of water at each of the nodes as time
passes. For a complicated example, however, the labour is considerable. Matrix algebra
handles this by representing the stream network as a matrix, CS], where a number
one shows a downstream connection between two nodes, and zero shows no such
connection. Let [w]t stand for the distribution of water at the various nodes in the
system at time t. Then the simple iteration model:

represents the movement of the water in the system, and where once again juxtaposition
indicates the process of matrix multiplication. An essentially identical model is used
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to model the growth and redistribution of population amongst regions between census
periods (see section VI (iii) and Rogers 1968, 1971, 1975).

Figure 3
How graphs, diagrams and maps generate matrices

In addition to the techniques discussed in this booklet there is also another
group of matrix methods in which the matrix represents a spatial or problem structure
and the concern is with manipulating the structure to yield the desired answer, usual]y
a maximum or minimum value for some sum defined upon it, or alternatively a desired
routing or selection of nodes in the structure. The elementary linear programming in
the transportation model described by Hay 1977 (CATMOG 11) and the simplex model
described by Killen 1979 (CATMOG 24) are such examples. The various classes of problem
described by Scott (1971) are often cast in matrix notation, but their solution does
not yield to the methods described here.

(ii) PREREQUISITES AND LITERATURE

Apart from an ability to do ordinary arithmetic, an acquaintance with elements of
ordinary algebra, a willingness to conscientiously work through the examples and
exercises, and to apply them to independent problems, the student needs no special
prerequisites to fallow this booklet. The aim is to give a self-contained numerical
acquaintance with the main processes using necessarily small examples. Computer routines
in BASIC are given in an appendix for matrix inversion and for finding the
eigenfunctions of a matrix so that no undue delay need occur for those people possessing
personal computers, but whose software packages fail to isolate these fundamental

elements of matrix arithmetic. In addition some worked examples using the commands
of MINITAB have been included in an appendix for users with access to this user-
friendly mainframe package for matrix manipulation.

No attempt is made to give formal proofs of the results given here. Proofs
may be sought in standard textbooks such as Hohn (1972), Hadley (1961), Varga (1965)
and Searle (1966). In a more geographical vein texts by Rogers (1971, i975), and Wilson
and Rees (1977) all discuss their topics with a heavy emphasis on matrix algebra. In
particular Rogers (1971) gives good numerical examples of his procedures. There is a
voluminous literature on matrix methods and no writer can do more than indicate the
ones he has found useful.

(iii) MATRIX OPERATIONS AS 'PROCESSES'
The great advantage of matrix notation is the compact way in which it represents
unwieldy tables of data, or the structure of spatial systems. As a way of obtaining
solutions to specific matrix problems there is nothing to beat it, yet I should be remiss
if I failed to point out that to manipulate the symbols you must understand what
happens when they are combined, in both an arithmetical and a geographical sense.
For this reason most of this text will write out the numbers most explicitly, perhaps
almost pedantically, but as a bonus we shall keep the matrices and/or the numbers
small and simple. There will, by and large, be a marked deficit of that compact notation
whose virtues r have just eulogised. Once a thorough understanding is attained, then
the formal and correct manipulation of the symbols is a great reward.

Several authors have dealt with the geographical meaning of matrix manip -

ulations. Garrison (1960), Nystuen and Dacey (1961), Pitts (1964), Gould (1967), Tinkler
(1972, 1976, 1977 CATMOG 14), all give fairly thorough examples. As we shall see in a
later section, Markov chains are most easily developed using matrices and in this
connection the reader should consult Collins (1975 CATMOG 1).

The mathematical meaning of some of the processes to be discussed below can
also aid in understanding and some use has been made of the idea that, in repeated
multiplication of a vector by a matrix, the matrix rotates the vector in geometric
space, often towards a fixed position. Gould (1967) made use of this idea to a give
a visual form to the meaning of eigenvalues and eigenvectors, and the idea is often
pursued in texts on Factor Analysis for social scientists, e.g. Harman (1967) and Rummell
(1970). Strictly of course, the mathematical 'meaning' of processes is usually that the
numbers obtained satisfy a matrix equation defined on the system. However, this is
not always helpful in understanding what these particular numbers mean in a particular
application.

(iv) MATRIX ALGEBRA AND THE COMPUTER
Matrix algebra has its roots in the nineteenth century work of Cayley but was
subsequently rediscovered and applied to fields as diverse as psychology and quantum
mechanics from the 1920's onwards. When computers became generally acccessible by
the 1960's it was clear that the vast data tabulations, which computers handle so
quickly, and matrix algebra were ideal suitors. The main high level (user) languages
then available such as ALGOL. and FORTRAN both included matrices as a basic type
of variable, and in multidimensional forms; not just rows and columns, but stacks as
well, like room levels in a sky-scraper. Matrices of more than three or four dimensions
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are not easily imagined but they are useful in the manipulation of some complex problems
involving data tabulations. However, they are rarely used in matrix algebra as such,
and in this booklet we will not go beyond rows and columns.

Both ALGOL and FORTRAN require the programmer to manipulate the matrices
in the proper way, i.e. using DO loops to combine the rows and columns in multiplication
((v) below). Thus programmers usually have a good working knowledge of matrix algebra.
Some languages, e.g. APL, BASIC, and Pascal do support symbolic matrix algebra, but
it is rare if not completely absent from the affordable end of the microcomputer market,
where the BASIC supported omits this facility. Thus most micro users are back in
the early days of mainframes in this respect.

BASIC has the quirk that the indexing of rows and columns begins at 0, rather
than 1, as it does in FORTRAN. This causes no particular problem, but it may waste
precious space for the unwary.

There is then a symbiotic relationship between matrices and computers. Matrix
algebra provides a very convenient notation: however, when we get down to the nitty-
gritty of doing the calculations, computers are essential.

(V) EMPIRICAL EXAMPLES OF MATRICES

One of the earliest examples of the use of matrices was Garrison (1960) where he
represented the road network of a part of the USA as a matrix of Os and is. He
then used powers of this matrix to count the available routes between places in the
system. By analogy to ordinary algebra the nth power of the matrix is the matrix
multiplied by itself n times. In this way the overall connectivity of any node in the
system could be found, and compared to other nodes in the system. Pitts (1964) and
Carter (1968) made similar uses of the technique. A network of roads, or a cellular
system of areas is easily represented by a matrix of is and Os. In Figure 3 five different
systems are coded. Figure 3(d) illustrates administrative systems for which cells are
counted as connected, and are marked with 1 if they have a common boundary, zero
otherwise. Numbering the cells in a different order will cause the matrix to 'look'
different, but it will not affect the final answers. Matrices of this type can be termed
STRUCTURAL MATRICES.

In a different category are FLOW MATRICES which might, for instance, be used
to record inter-regional population movements from origin-destination data collected
in censi or surveys (Rogers 1968), telephone calls between exchange areas (Soda 1968,
Hirst 1972), or taxi flows between traffic zones based on enumeration areas (Goddard
1970). In this case the matrix entries can be larger than 1, though many may be zero,
or nearly so. They nevertheless imply a spatial structure of connections, weighted by
the strength of the flow, and this is true even if all possible connections have flows
larger than zero. Nystuen and Dacey (1961) provide an early example of the matrix
analysis of flows.

Naturally, matrices need not imply a spatial structure, although usually a
tabulation will be based upon geographical spatial units. For example, many urban system
analyses collect socioeconomic data on the basis of census areas at various scales,
and then proceed to analyse this DATA MATRIX to extract groupings, either of areas,
or of socioeconomic categories. Analysis is usually based on the eigenfunctions described
in Section VII below, and emerge in the literature as Component Analysis and varieties
of Factor Analysis (Hirst 1972, Goddard and Kirby 1976 CATMOG 7, Daultrey 1976 CATMOG

8). The usual first step in Component and Factor models is to obtain a CORRELATION
MATRIX showing the pairwise correlation amongst the variables. Because the number
of socioeconomic variables is usually less than the number of spatial collecting units
the correlation matrix is usually amongst these variables, rather than between the
regions. In a sense the correlation matrix can be regarded as a sort of flow matrix
since the square of the correlation coefficients, the elements in the matrix, measure
the amount of nonrandom common variance between each pair of variables. That is
to say it can be thought of as a 'variance' flow.

TRANSITION MATRICES and INPUT-OUTPUT MATRICES are two sorts of flow which
have a particular structure imposed upon them by the problem they are structured
to solve. To form a transition matrix each element in any row is divided by the tota]
for that row. Therefore each row can be thought of as a set of weights or probabilities
controlling the probability of transition from the cell indexed by the row number
to any other cell, indexed by the column. Operations on matrices of this type are
described by Collins (i975 CATMOG 1).

The INPUT-OUTPUT MATRIX has entries called technological coefficients which
show the amount of goods, in cents or pennies, purchased by a given industry from
all the other industries, including itself and which are needed to produce one dollar
or pound's worth of industrial output. Unlike the transition matrix, the rows of the
input-output matrix sum to less than one (or the industry wouldn't make a profit).
Manipulations on this matrix show the multiplier effect on the economy for a given
demand.

These are the principal categories of empirical matrices the geographer will
encounter in the literature, or construct in his research. Once analysis gets underway
most empirical matrices become equivalent to flow matrices; even structural matrices
imply the potential of flow. Because of this it is well to consider the strictures mentioned
in Section I (iii) above: that operations on matrices always have an interpretation
as movements within the implicit spatial structure of the problem, and the meaning
of these interpretations must be carefully considered. The reader can follow up issues
of this sort in, for example Stephenson (1974), Tinkler (1976), Garner and Street (1978)
and Tinkler (1979).

The mathematical properties of some matrices also give rise to particular names
needed to identify them. These are dealt with in Section III below, but first it is
necessary to go through some formal definitions of the basic entities in matrix algebra.

II DEFINITIONS

CD MATRIX

A MATRIX is a rectangular array or table of numbers enclosed in either square or
curved brackets; I shall use square ones. An n by m matrix has n rows and in columns.
For example:
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By strict convention, when a matrix is said to be n by m, the first number ALWAYS
indicates the number of rows, and n by m is said to be the 'order of the matrix.
When n = m the matrix is said to be square of order n, and this is an extremely
common type of matrix, see Figure 3. Within the matrix itself, each of the n x m
positions or elements must be defined, even when they are zero. It is not usual or
good practice to leave elements blank. Most of the time the elements are explicit numbers,
but they may be algebraic entities, in which case they are assumed to behave in the
manner of ordinary numbers. For the sake of illustration the numbers used in this
booklet will be small, usually integers, and often positive, but in practice they will
usually be large, fractional and even negative (e.g. correlation coefficients). In written
work the numbers should be well enough spaced apart from one another that the presence
'of a space serves to separate them, and so that no confusion ensues.

(ii) SCALAR

In the previous section [37 was defined as aixi  matrix. The definition is needed
because certain matrix operations may end with a single number (Section IV (iii)c),
and clearly it should have a matrix definition. However, the 1  by 1 matrix is merely
an ordinary number, and it behaves and is treated as such. The usual term, therefore,
for a 1 by 1 matrix is SCALAR, since its usual function is to scale the elements of
a matrix or vector (see below) up or down by a constant factor. It is not usually
written in brackets. However, the reader should remember that if need be, and in the
tradition of Humpty-Dumpty (who made words do extra work and paid them extra for
the effort), its a matrix when I want it to be one.

(iii) VECTOR

In (i) above I did not illustrate, purposely, matrices of the type 1  by m or n by I,
although they are quite valid. In the former case the matrix has just one row, in
the latter just one column. Matrices of this type are so common in applications that
they are universally given the name VECTORS, with the obvious sub-types ROW vector
and COLUMN vector. The latter is seen in Equation 3 of I(i). It might seem unnecessary
to have both types of vector but the need arises from the way they emerge naturally
when certain sorts of operations are defined on matrices. It is permissib]e, but not
strictly necessary, to write row vectors with the elements separated by commas if there
is any danger of confusion, or to save space. However, clear spaces serve the same
purpose. Therefore [3,1,2,0] is the same as [3 1 2 01

(iv) MATRIX DIMENSIONS

The dimensions of a matrix as defined in computer programs is equivalent to that
of order defined above. In programs enough space has to be reserved, i.e. the matrices
are DIMENSIONED, for the largest matrix size one might want, although the typical
problem may use much less space than this. The term ARRAY is sometimes used in
computing languages for the terms matrix and vector in matrix algebra. There is also

a relationship to Euclidean dimensions since each row of the matrix is usually regarded
as an axis orthogonal to all other axes, and Factor and Component models make explicit
use of this geometric view of a matrix.

(V) SYMBOLIC REPRESENTATION

In printed works a matrix is often shown by a boldface capital letter, B, and a vector
by a boldface lower case letter, b, although some books use italics. In handwritten
work capitals and lower case, underlined, will suffice to separate matrices from ordinary
numbers, scalars, with which they often appear in association. Brackets of various
sizes, written in association with matrix symbols, are used as in ordinary algebra to
modify the order of operations and to group terms as required.

In this booklet it will be convenient (because of my word processor!) to write
a matrix or a vector in square brackets: the matrices with capitals, the vectors with
lower case. Such a notation is also convenient for handwritten work. Hence:

[w] = [r][S].

The link between specific locations in a matrix and the general matrix symbols is
achieved by defining a matrix as the assemblage of its parts:

[A] = [a(ij)]

and in this case [a(ij)] stands for all the various numbers of the matrix enclosed
in their brackets, as I shall now show in detail.

(vi) LOCATING AN ELEMENT IN A MATRIX - INDEX NOTATION

A given matrix has n rows and m columns. However, to refer to arbitrary rows, columns
and elements in a matrix it is usual to use the terms i and j. The index i stands
for any chosen row, and is a number in the range 1 to n (the maximum number of
rows.) Likewise for the columns, j lies in the range 1 to m. A 3 x 4 matrix would
be written thus:

where [A] has dimensions, or order, n x m. Notice that in this case the element is
referred to symbolically with a lower case letter. This is to indicate that any individual
element in a matrix is a scalar, or ordinary number. The brackets are to indicate
the complete set of a(ij)s . Written unenclosed by square brackets an a(ij) refers to
an individual element on its own. Therefore:
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then b(23) = z and b(32) = O. If row and column indices are identical then the elements
lie on the main diagonal running from top left to bottom right, e.g. b(11) = e, b(22)
= 2.5 and b(33) = y. It is not often necessary to reference particular elements and
the indices i and j are most often used running over all the available values, i.e.
i in the range 1 to n, j in the range 1 to m, in order to define the various arithmetical
operations discussed below in Section IV.

Finally recall (as mentioned above) that the first index - ALWAYS indicates the
number of rows, and the second the columns, even if the order of i and j, n and
m are interchanged. This precedence enables the definition of matrix symmetry and
transposition to be described.

III SPECIAL. TYPES OF MATRIX

A number of particular types of matrix is needed in the process of doing arithmetic
with matrices. They arise from certain common structures with sufficient frequency
to merit special names.

(1) I1A.TRIX

Matrix equalities and inequalities can be written as in ordinary algebra. Two matrices
or vectors are equal if and only if ALL their corresponding terms are equal. For example
[A] = if and only if a(ij) = b(ij) for all pairs of i and j. When equalities or inequalities
are written with respect to a scalar then the same rule applies: all entries in the
matrix must obey the requirement. So, for example, writing [b] > 0 states that all
elements of [b] are larger than zero. Similarly [b] = 1 sets all elements of [b] equal
to 1. Writing IA] # 0 would indicate that no element of [A] is equal to 0.

(ii) NULL MATRIX

The NULL matrix of order n is, as the name might suggest, a square n x n matrix
full of zeros. It is symbolised by On Similarly a null rectangular matrix can be defined
if required. The null matrix often, but not always, acts in matrix algebra as 0 does
in ordinary algebra. For example, two matrices, neither of which contains zeros may
have a matrix product equal to [0]. However, it acts as a conventional 0 for matrix
addition and subtraction, and as a term in a matrix product will cause a null product.

(iii) IDENTITY MATRIX

The IDENTITY or UNIT matrix (either term is common) is a square matrix of zeros
except for the MAIN or PRINCIPAL diagonal of is going from the top left to the
bottom right corner: 

It is symbolised by [I] and may be written for any order. The matrix acts in matrix
multiplication as a 1 does in ordinary algebra (see IV (iii) (e) below).

(iv) MATRICES AND VECTORS OF ONES
There is sometimes a need for a matrix or vector composed entirely of ones. Such
forms are easily defined by equalities, for example [E] = 1, and [E] are conventional
notations. In the case of a vector where the need is often greater the convention
is often [x] = = 1, which defines a unit row vector. Unit column vectors are similarly
defined, for convenience the transposition notation is often used (see below) where
[ DT indicates the transpose of [D, i.e. the row vector becomes a column vector.

(v) DIAGONAL MATRICES
If the ones in the identity matrix are replaced with either a constant, k, or any
set of numbers then the matrix is said to be DIAGONAL:

The label [D] can be used as a mnemonic, but is not universal. A common variation
of the form is the tri-diagonal matrix:

Of course, the elements marked I could be any numbers whatsoever.

(vi) UPPER AND LOWER TRIANGULAR MATRICES

In the upper TRIANGULAR matrix all entries below the main diagonal are zero, and
vice versa for the lower triangular matrix.

It is actually easier to 'see' the structure if the zeros are left blank, contrary to
normal practice.

(vii) SYMMETRIC MATRICES
A very important subset of square matrices is SYMMETRIC matrices. A matrix is symmetric
when mirror image positions across the main diagonal are exactly equal. For example,
letting a, b, c ... be numbers then: .



is a symmetric 3 x 3 matrix. It is irrelevant what the values on the main diagonal
are. They may be zero, all the same, or all different: it is the off-diagonal positions
that define the symmetry. A symmetric matrix is most often defined by initial definition,
e.g. "Let [H] be a symmetric matrix." It can be also defined using matrix equalities,
by b(ij) = b(ji) for all i and j. More compactly it may be defined using the idea of
a transpose, see the next section.

In geographical examples symmetric matrices very often are defined by problems,
for example correlation matrices are symmetric, and the graphs of transport networks,
at least in elementary examples, usually have symmetric adjacency matrices (Fig. 3).

(viii) THE TRANSPOSE OF A MATRIX

The TRANSPOSE of a matrix is an operation on a matrix rather than a kind of matrix.
However, it is so commonly used that it is convenient to define it here, The transpose
of [A] is defined symbolically as [A] T. Another occasional form is trs[A]. It is obtained
by interchanging the rows and columns of [A]: the first row of [A] becomes the first
column of [A] I , the second row becomes the second column, and so on. It is defined
for all types of matrix, including vectors, e.g.,

By definition a symmetric matrix is equal to its own transpose, [A] = [M T. The purpose
of the transpose is usually to switch matrices and vectors around into positions that
make various operations in matrix algebra possible, i.e. computationally legal.

(ix) PERMUTATION MATRIX

A PERMUTATION matrix contains only Os and is such that each row and column contains
exactly one 1. It is used in conjunction with its own transpose, and matrix multiplication
to reorder a matrix. For this reason I shall delay discussion of it until section IV
(iii) (f).

IV MATRIX ARITHMETIC

(i) ADDITION AND SUBTRACTION

The procedures of matrix addition and subtraction are easy to learn. However, unlike
ordinary algebra it is necessary to check that two matrices are 'conformable' for
addition (subtraction). To be conformable for addition, two matrices have to be of
identical dimensions. For example, while two matrices of dimension 3 x 4 and 3 x 4
are conformable for addition, two matrices of dimensions 3 x 4 and 4 x 3 are not.
(However, conformability for multiplication follows different rules, see (iii) below.)

Given conformability, addition and subtraction proceed by the usual process,
element by element:

Because individual matrix terms may have positive, zero or negative signs the usual
care is necessary when combining terms:

Because everything proceeds term by term, and each computation is independent of
every other, it is clear that the ordinary rules of arithmetic hold and we can combine
any number of matrices in this fashion provided only that they are conformable. It
is also clear that addition (subtraction) is commutative and associative (it is independent
of the order in which the matrices are written, or the order in which the addition
(subtraction) is carried out).

Formally matrix addition (subtraction) is written as:

In the first equation the term by term procedure is explicit, in the latter it is implicit.

(ii) MULTIPLICATION OR DIVISION OF A MATRIX BY A SCALAR

It is convenient at this stage to describe the adjustment of a matrix by a scalar.
This involves multiplying or dividing every element in the matrix by the same number.
According to your fancy a scalar is an ordinary number or a 1 x 1  matrix. If you
prefer the former then I have described the procedure used to scale up or down the
elements of a matrix by a constant amount. In the latter case the fancy title for
the same thing is forming the KRONECKER or DIRECT PRODUCT of two matrices. In
either case the result is the same. Let k = 3, then:

- 14 -
- 15 -



This illustrates an important point about matrix multiplication: the order of

multiplication matters . This follows in part from the definition of conformability since
a 3 x 4, 4 x 3 pair yields 3 x 3 whereas in reverse a 4 x 3, 3 x 4 pair produces
a 4 x 4 which obviously cannot be the same. However, the same is true even for square
matrices, as illustrated above. The order of multiplication matters and we say that
[A] and [B] in [A] [B] = [C] do not commute, i.e. cannot swop places and give the same
answer.

There is one fortunate case where square matrices do commute: a matrix commutes
with itself and so powers of a matrix are easily defined, Take [Al

Of course the same procedure is used whatever the numerical value of k. In reverse
the procedure is used to extract a common factor from a matrix, as sometimes happens
in the hand computation of inverses (section iv(c) below). The scaling of a matrix by
a fraction occurs in some applications in which matrices are powered and which are
discussed in later sections.

(iii) MATRIX MULTIPLICATION

(a) Multiplication of two matrices

The reader will have guessed that things can't stay that simple for long, and
multiplication is a little more involved, although once the procedure is routine it can
be quick for hand examples. The method will be described first for two matrices, after
which it will be seen that the multiplication of a vector and a matrix is a simplification
of the basic method. First, however, it is necessary to check for conformability. To
ensure that two matrices are conformable for multiplication write out their dimensions
IN THE ORDER IN WHICH IT IS INTENDED TO DO THE MULTIPLICATION. So suppose [A]
is 3 x 4 and [B] is 4 x 3, and we wish to compute [C] = [A] [B] then write 3 x 4,
4 x 3. The rule is that the matrices are conformable if the inner two numbers are
identical. Since they are in this case, 4 and 4, the matrices are conformable for
multiplication (although not, note, for addition). The rule also states that the result,
[C], will have dimensions given by the order of the outer two numbers; hence 3 x
3. To take another example with the dimensions 2 x 6 and 6 x 4. From the rule they
are conformable since the inner pair is 6, and the result will have dimensions 2 x
4. Clearly, the matrix result of muliplication need not be the same size as either of
the original matrices. However, a simpler and very common case is that of two square
matrices of identical dimensions. They will both have dimensions n x n, and so are
conformable, and the result will also be n x n. This situation is encountered when
a matrix is to be raised to an integer power, and is multiplied by itself.

Now to the process itself. In verbal terms, and given two conformable matrices
written out in the order they are to be multiplied, we take the first row of the
first matrix and the first column of the second matrix. Running along the row and
column we multiply corresponding pairs and then add all the results. This gives us
the element (i,1) in the result. In general to form the ijth element of the product
matrix we combine in this fashion the ith row with the jth column. An easy mnemonic
is to remember that we take a Row and a Column: matrix multiplication is Roman Catholic!

Doing everything in order, the matrices are conformable because they are 2 x 3 and
3 x 2, and the result will be 2 x 2. The element (1,1) in [C] is found by taking the
first row of [A], (3 1 2) and the first column of [B], (6 1 4), multiplying corresponding
terms and adding:
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The procedure can be repeated to get higher powers:

(b) Multiplication of a matrix by a vector

The same rules apply to matrix/vector multiplication as to matrix/matrix multiplication.
The only difference is that the whole procedure is simpler because in one of the matrices,
the vector, there is only one row. The rules of conformability remain the same so
that a 1 x 4 vector is conformable with a 4 x 4 matrix, or a 4 x 7 matrix. In the
former case the result is still a 1 x 4 vector, in the latter a 1 x 7 vector. It is
also necessary to introduce some more terminology. If the vector comes first in the
order of multiplication we say that the vector PRE-MULTIPLIES the matrix, if after,
it POST-MULTIPLIES the matrix. This distinction is made because in many cases the
matrix is viewed as the stable element, while the vector keeps changing its numerical
contents. As an example of pre-multiplication:

The equation is conformable since the 1 x 3 vector and the 3 x 3 matrix produce
a 1 x 3 row vector. Because the resulting vector has the same dimensions as the original
one, the multiplication can be repeated if the result, [x], is subsituted for NI The
reader should check that in this case the result is [44 38 47]. This iterative procedure
is very common and is the basis of Markov Chains (See VI (ii)). Similar comments apply
to post-multiplication:

Notice that the system is conformable for post-multiplication provided that [v] is
written as a column vector. Then the dimensions are 3 x 3, 3 x 1, with the resulting
column vector [x], of dimensions 3 x 1. Notice that although the same matrix and vector
is involved the result is not the same so that even in this simplified form the system
does not commute. An important exception is the case of a symmetric matrix when
it is true that [x)[A] = [F][x].

When the row vector contains only is (see III (iv)) then the product of pre-
multiplication is equivalent to adding up the elements in the columns of the matrix.
Likewise, a column vector of is can be used with post-multiplication to add the elements
in each row. The reader should check that this is so for the matrix CA] above and
that the results of [1][A] and [A][S] are respectively: [ 6 4 5 ] and [ 7 4 4 ].

(c) Multiplication of two vectors

Two vectors may be combined according to the same rules of conformability. Taking
the most general rule first then if the vectors have a different number of elements
they will only be conformable in one of the following configurations: n x 1, 1 x m
to yield an n x m matrix, and m x 1, 1 x n to give an m x n matrix. In either case
the first vector is taken to be a column vector (it has either n or m rows) and the
latter to be a row vector (with m or n columns).

However, these forms are rather unusual and more common is the case of two
vectors each with n elements. These follow the same rules as above but the two n
x n matrices that result are merely transposes of one another. For example:

The primary use of such a construction is to represent, and to extract, the structure
due to one component, factor or eigenvector of a correlation matrix, (see V (iii)). It
is used in this way in Component or Factor Analysis.

However, two vectors of equal length may also be combined in the form 1 x
n, n x 1 to yield a scalar answer, a 1 x 1 matrix:

This form is termed the INNER PRODUCT (or DOT PRODUCT) of two vectors and one
use of it is to determine if two vectors (thought of as points connected by a line
to the origin of an n dimensional Euclidean space) are at right angles - are orthogonal
- or not. For example the vectors [1 1] and [-1/3 1/3] are orthogonal because:

The result is the same if they are taken in reverse order (check it!). This test is
of use in the definition of eigenvectors of a matrix, and is discussed in Section V
(iii).

The reader will have noticed by now the considerable freedom used in decisions
as to whether a given vector is to be a column or a row vector. This is an important
part of matrix methodology; the crucial criterion is that the matrix process to be
used is appropriate to the problem in hand. Most of the manipulation with transposes
is merely to ensure that the vector and matrices (which after all are merely lists
and tabulations) are in the proper position for k the same formal rules of matrix
arithmetic to be used each time. This sort of problem doesn't arise in ordinary algebra.
It may be taken as a general rule that if a vector, distinguished in this booklet
by lower case letters, PRECEDES (pre-multiplies) a matrix then it is a row vector;
conversely if it FOLLOWS (post-multiplies) a matrix it is a column vector. However,
a column vector will not always have a transpose symbol attached to it.
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(d) Symbolic  notation for matrix multiplication

The rules of matrix multiplication are written out in detail for each term, element
by element, as follows, and make use of summation notation:

The i and j terms are fixed for any particular c(ij), a single term in the matrix
product [C) = [A] [M. The summation of the products then runs over the available
k elements as determined by the dimension of the matrices: so if [A] is n x m and
[B] is m x n then k runs over the m columns of [AI (for a fixed row i) and over
the m rows of [B] (for a fixed column j).

(e) Multiplication  17,2 E03 and 17:9 113

I stated earlier that usually [0] acts as a zero in matrix algebra, and that [I] acts
as an identity element. It is as well to test these assertions, and they are easy to
check:

Check that pre-multiplication by [O] also yields a [O] matrix. Similarly with [1]:

The reader should also check that if [x] is a row vector then [x][I] = [x], and similarly
in the case when [x] is a column vector: it is merely a matter of carrying out the
indicated arithmetic as a check. The identity matrix is used particularly in the definition
of the matrix inverse which follows in the next section.

(f) The permutation matrix again: an example of matrix manipulation

The permutation matrix was mentioned earlier, but illustration was delayed until matrix
multiplication had been developed. The purpose of the permutation matrix is to reorder
the columns and rows of a matrix without a]tering the size of the elements. Suppose
we have the matrix [T] which we wish to reorder to [T]* so that the columns are
arranged according to their column sums, decreasing from left to right. Then suppose
that [n is:

The columns sums can be found from the multiplication UHT) = [12 8 13 9] where
[1] is a row vector of four is. These column sums are now ranked in descending numerical
order to make a vector of ranks [2 4 1 3]. The permutation matrix [P] is constructed
as follows. If  the jth column of [T] has rank k then:

p(jk) = 1, and = 0 otherwise.

Verbally, the jth row of [P] has a i in the column whose number is equal to the
jth element in the vector of ranks. Therefore [P] is equal to:

There should be only one I in any column or row. The reordering of [T] to [T]* is
now accomplished by performing the following multiplication:

[T]* = [P] T[T][P]

The reader, working from the left, should carry out the multiplications and see that
the result is [T]* equal to:

and the reordering has been achieved (the rows as well as the columns have been
moved). The reader can check, as an exercise, what the following multiplications
accomplish: [F][T] and [T][P].

(iv) MATRIX 'DIVISION'? - THE MATRIX INVERSE

(a) Definition

Formal matrix division in the straightforward sense, as defined for addition, subtraction
and multiplication does not exist. Instead it is necessary to take a long-winded route.
If we wish to divide by the matrix [A] we must first find its inverse, written inv[A],

algebraic methods to matrix entities.

Because we have defined an identity element for multiplication, [I], it is possible
to define [AT I as being that matrix such that:

[A] [AT-1 	= [A]-1 [A] = [I]

That is, it must yield the identity matrix on pre- or post-multiplication with the original
matrix, and this parallels the algebraic definition of a reciprocal in ordinary arithmetic.

(b) Incidental comments on the inverse

The inverse is so important to matrix computation that some comments must be made
at this point that bear on both its existence, and its computation.
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The problem is to find (AT' given [A]. Happily if [A] has an inverse it has
only one, and is therefore unique. Less happily [A] doesn't always have an inverse,
but it is some measure of comfort that all methods used to compute [AT' will fail
when it fails to exist. Usually if [A] fails to have an inverse it signifies that the
original problem is ill-posed in some sense so that the lack of an inverse is not usually
an inconvenience - it is usually a hint that the empirical problem is somewhat deficient.
It is sometimes possib]e to see in advance that [A] doesn't have an inverse since this
is determined by a number called the DETERMINANT. If it is zero the inverse fai]s
to exist.

Even when the inverse does exist, and even though it is unique in the
mathematical sense, it is well to be warned that numerical methods may yield an answer
that is incorrect due to accumulating rounding errors in the arithmetic. Whenever
possible double precision variables should be used in computer routines (Microsoft Basic,
MBASIC, provides double precision variables to 16 digits) and it is well to remember
that the ONLY test of the accuracy of a computed inverse is by testing the result
according to the definition: [AT' [A] = [D to acceptable levels of accuracy. The program
in the appendix uses 1E-6 (one part in a million) as a criterion for whether a given
element in [All [A] is "close enough" to M. The problem is worst for large matrices
with a great variability in the size of the original numbers (Unwin 1975).

(c) Calculating [AP by ,formula

For serious work [AT' should be computed by a sub-routine designed to circumvent
the problems mentioned above. However, it is useful to see how for small examples a
formula can be found for (AT', and especially as it demonstrates how the DETERMINANT
controls the existence of the inverse. Starting from the definition: [AT' [A] = [I] it
is possible to write out for a 2 x 2 matrix:

where the first matrix, [A], contains the known elements, and the second matrix, [AT',
contains the unknown elements of the inverse. Then by following the rules of matrix
multiplication, applied element by element:

These are four equations in four unknowns (e, f, g, h) which can be solved by standard
methods of algebra. I shall illustrate the computation of the first element. Take the
pair (i) and (iii) (they contain the same pair of unknowns, e and g). Multiplying (i)
by c and (iii) by a gives:

aeo + bgc =
aec + adg = 0

then:

adg - bgc = -c
g(ad-bc) = -c

g = -c/(ad-bc)

Similar methods are used to obtain h, e, and f. In each case the same denominator
will be found: (ad-bc).

This term is called the DETERMINANT and may be written as det[A] or I A I,
i.e., the matrix is enclosed by vertical bars, not brackets, and this implies that the
calculation of the number called the DETERMINANT is to be made. Thus I A I is a
number, unlike [A] which is an array of numbers called a matrix. Clearly, if this
number, the Determinant, is zero all elements will be zero and the inverse will be the
Null matrix (see III (ii)). The remaining terms of the inverse should be found to be
such that:

Similar algebraic methods can be used to find a formula for the inverse of larger
matrices, but they become very lengthy. However, in all cases a common denominator
to all terms is found and may be factored out as a scalar in the manner shown above.
Most users will have no practical use for the Determinant so its computation in larger
examples is bypassed here. The user may request it in many statistical packages, and
it is well to note that as it approaches zero the inverse will tend to be very unstable
numerically since the division may result in very large values.

The inverse formula for a 3 x 3 matrix, [M, is when:

(d) Calculating [AP numerically

The proof of the pudding always lies in the eating when dealing with the inverse.
In this section we shall check the 2 x 2 formula by using direct calculation. Although
a straightforward algorithmic routine can be applied to obtain inverses by hand, I
shall not describe it since for serious work pre-packaged subroutines will be available.
However, an appendix does provide a listing of such an algorithm in a minimal form
of BASIC so that a personal computer user has access to a functional subroutine.
Another appendix provides a worked example showing how to use commands in MINITAB
to obtain the inverse. (Note that mainframe BASICs will usually provide the inverse
via a single line of programming code since mainframe BASICs support symbolic matrix
algebra, however if double precision is required it may be necessary to use another
programming language.)
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We will now check the formula numerically in the 2 x 2 case. (The reader is
also invited to check the formula algebraically by multiplying out the various terms.)
Suppose that [A) is:

This shows that a matrix and its inverse commute, i.e. the order in which they are
multiplied is immaterial. Because I shall have recourse to the inverses of small matrices
in the examples that follow in later sections I shall by-pass further examples at this
stage. However, the reader should check that the inverse to the problem posed in
I (i) is:

WARNING: in small and exact examples like the one above there are no rounding
errors, but I shall reiterate the warning given earlier - in empirical work great
care must be taken and the checking computation MUST be performed, and in
computer work use double precision arithmetic whenever it is available.

V EIGENFUNCTIONS

A matrix must be square to possess EIGENVALUES and EIGENVECTORS, jointly called
EIGENFUNCTIONS, and in all our applications the elements of the matrix will be real
numbers. In many, but not all cases (certain probability matrices are an example), the
matrix will be symmetric.

There are several ways to approach an understanding of eigenfunctions and
to reach the widest audience something of each wil] be indicated. The mathematical
view, and clearly this subsumes all other approaches, is that they are sets of numbers
satisfying certain equations defined on matrices. However, a more practica] acquaintance
may be gained by taking a geometric, or what is equivalent, an iterative view of how
eigenfunctions arise.

(i) A GEOMETRIC VIEW AND ITERATIVE VIEW

A geometric approach is essentially visua], and it will be helpful provided it is realised
that the image must be imagined as behaving in essentially the same way for matrices

of n dimensions. I can only illustrate easily a two dimensional example. Suppose we
have the vector [i 2]. The two elements can be thought of as a coordinate [x y]
in a two dimensional Euclidean space, and can be plotted as a vector by connecting
the point to the origin, [0 0], of the space. If we multiply the vector by a scalar,
say 3, we get the vector [3 6]. Likewise if we add another vector to it, say [3 4]
we would get [1 2] + [3 4] = [4 6]. All of these results can be plotted, (see Figure
4(a,b)). Now consider what happens if we take a matrix [R], and pre-multiply by some
arbitrary vector, say [1 0]. The result is then taken back and again pre-multiplies
[R], and so on. Let:

Figure 4
Graphical illustration of eigenfunction behaviour
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In this listing the final number is the sum of both elements in the vector and after
the first step this sum inflates steadily by a factor of 3 for each step. That is to
say that vector grows, or is stretched by this factor of 3, for each pre-multiplication
performed. Roughly speaking this is also true of each element of the vector, although
this relation takes a little longer to settle down and become exact. If we discount
this inflating effect, say by dividing through after each iteration by the sum for
each vector, then it also becomes apparent that the vector elements are slowly becoming
equal. The last pair listed give [0.5062 0.4938] when divided by 81. Two steps later
the relevant vector is [363 366] and the ratio is [0.4979 0.5021]: although the elements
have reversed dominance, they are both closer to the ultimate ratio of [0.50 0.50].

In consequence it should be clear that the matrix [R] is having the effect of
stretching the vector each time by a factor of three (see Figure 4(c)), and of swinging
the vector to a position which is becoming 'fixed' in a relative sense, i.e. the two
elements are becoming equal to each other (see Figure 4(d)). Surprisingly, this property
holds whatever vector is supplied for repeated pre-multiplication. For this particular
[R] the stretching factor will always be 3, and the ultimate ratio of the two elements
will be [0,50 0.50]. The first is the principal (i.e. the largest) EIGENVALUE, and the
second is its corresponding EIGENVECTOR. The set of all the pairs constitute the
EIGENFUNCTIONS for the matrix in question. It will be obvious from this that the
iterative approach is essentially identical to the geometric, the one numeric, the other
graphic,

That the eigenvector is 'fixed' in position can be seen by pre-multiplying [R]
by the vector [1 1]. The result is [3 3], from which we can see that the ratio of
the elements on the vector has not changed, but their size has increased by 3, the
corresponding eigenvalue.

While this iterative procedure, and its graphic counterpart, is convenient for
finding the principal eigenfunction, it is more troublesome for finding others, because
unless the vector used as an input is exactly at right angles (in a mathematical sense)
to the principal eigenvector it will converge to the principal eigenvector. A solution
to this problem is to 'extract' mathematically the effect of the first eigenfunction
from the matrix, and then to proceed as before. The next step will extract the largest
remaining eigenfunction, the second ]argest in the original matrix. This can be done
until all eigenfunctions have been extracted and is the basis of what is called the
power and deflate method of finding eigenfunctions (and of the program in the
Appendix). In a n x n matrix there wi]l be n of them. However these details make
it necessary to give a mathematical definition of eigenfunctions.

(ii) MATHEMATICAL NATURE OF EIGENFUNCTIONS

Note the appearance of the identity matrix, to keep the equation in order. The equation
now has the form of an equation system [A][x] = 0, which is trivially true if [x] =
0, whatever [A]. However an eigenvector equal to zero is of little interest, so the
alternative is that [A] acts multiplicatively as zero. This it will do if det[A] = 0,

Determinants were mentioned in passing in the section on the matrix inverse (IV (iv))
and a full definition is unnecessary here since the intention is merely to illustrate
the method of the mathematical solution. If [A] is say:
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know that the trace of a matrix, written tr[A], is the sum of the elements on its
main diagonal, and this is equal to the sum of a]l the Xs. Therefore in this case
tr[A] = 4, as is the sum of the two roots found, 4.2361 and -0.2361. Obviously when
n is large, as in most useful examples, the procedure given above is both more lengthy
and less elegant; hence the recourse to packages designed to compute the results
efficiently and accurately.

There remains the problem of computing the corresponding  eigenvectors.
Returning to the equation which defined the eigenfunctions, we can insert the

eigenvalues one at a time and solve for each of the unknown eigenvectors:

second eigenvector was [1 -0.618]. However, it is important to realise that the signs
on the terms are assigned arbitrarily and the vector is equally valid written in the
form [-1 0.618] and this is true irrespective of whether the eigenvalue itself is positive
or negative. When the eigenvalue is negative then according to the equation its effect
(or equivalently that of the matrix) is to reverse the signs an its eigenvector with
every iteration.

The reader should repeat this analysis on the matrix [R] given in the previous
section, (i), whence the equation for the expansion of the determinant should be

Recalling the earlier section on notation the bracketed 1 and 2 attached to x merely
indicate successive elements of the vector Ix]. Writing this out term by term as the
multiplication indicates we obtain:

The calculations have been illustrated for a real symmetric matrix (albeit small)
because for a great many applications, especially those involving Component or Factor
Analysis, that is the typical situation. The input matrix is very often a matrix of
correlation coefficients, which by definition is real and symmetric.

However, the same procedures can be carried out for non-symmetric matrices,
but then the complete solutions usually involve the use of imaginary or complex numbers.
In the case of transition probability matrices (see section VI (ii)), which are typically
asymmetric, the principal eigenvalue is set to equal 1 by the character of the problem,
and the interest lies in the elements on the fixed vector corresponding to it. Whenever
the matrix is assymetric there are two eigenvectors (called conjugate) to every
eigenvalue, however in the case of transition probability matrices only one of those
associated with the principal eigenvalue is of interest, the other is a unit vector,
all elements equa] 1. Little use is made of the other eigenfunctions.

Although the computation of the eigenfunctions is usually numerically tedious
for anything but very small matrices it is possible to get some idea of the magnitude
of the principal eigenvalue by inspecting the input matrix. It is known that the principal
eigenvalue must lie between the limits imposed by the smallest and largest row or
column sums of the input matrix. In the small example above we therefore know that
it must lie between 3 and 5, which it does (more refined limits have been established
but are not pursued here). If the input matrix is composed of non-negative values
then it is also guaranteed that the principal eigenvector is non-negative (or more
strictly has all elements the same sign), and the vector of row or columns sums (either
will do if [A] is symmetric) gives a good estimate of the principal eigenvector. For
example for [A] above [1][A] = [A][1] T = [3 5] which is linearly proportional to [1
1.667], a reasonable approximation to the exact solution [1 1.618]. However, all subsequent
eigenvectors are bound to contain some negative elements. In the example above the

Daultrey (1976 CATMOG 8) gives a similar worked example for a 3 x 3 correlation
matrix, apart from the actual extraction of the roots. Because of the general importance
of the correlation matrix in geographical applications the next section shows how
such a matrix may be teased apart into its parts by means of the eigenvalues and
eigenvectors.

(iii) MORE ON THE EIGENSTRUCTURE OF  REAL. SYMMETRIC MATRICES

One very useful property that eigenvectors have, and which was mentioned in an earlier
section, is that of orthogonality. This is another way of saying 'at right angles' or
'normal' to each other. The property is very easily tested. If the INNER PRODUCT of
two vectors is zero, then the vectors are orthogonal to each other. (To review the
I NNER PRODUCT see section IV-(iii)-c). If we take the two eigenvectors determined in
the earlier section [1 1.618] and [1 -0.618] then indeed:

The reader can check that this does not depend on the assignment of signs on the
second vector: they can be reversed to give the same result. This property holds mutually
for all n eigenvectors of an n x n matrix. It is the basis of the method o2 Principal
Components, whose main aim is to find the 'natural' axis system of any particular
matrix, and the data set from which it was drawn. Each eigenvector is an axis. The
elements of the eigenvector show how well related each original point is to this axis,
and the eigenvalue is a measure of the relative strength of the axis, in terms of
the original data set.

To show how this can be used to extract the 'effect' of each eigenvalue from
a matrix we must first reduce the eigenvectors to the UNIT VARIANCE form. Take
the eigenvector, in whatever form it was obtained, and sum the square of its elements:
for the example above; 1 + 2.617924 = 3,617924; now multiply each element on the vector
by the square root of this number (1.902084) to get [0.5257 0,8506]. The elements are
still in the original ratio but their total variance, the sum of their squares, now
equals 1.

Now that the eigenvectors have been reduced to a standard form we can produce
a matrix representing the effects of that eigenvector and its eigenvalue, Daultrey's
example will be used, he starts with a correlation matrix as follows:
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The signs are the reverse of those given in Daultrey because (a) these are the results
produced by the program listed in the Appendix, and (b) it emphasizes the fact that
the assignment of signs on the eigenvectors is arbitrary in the sense that reversing
them on any eigenvector  does not affect their orthogona] properties. The component
that any eigenvalue and eiganvector contributes to the matrix [R] is now computed

bycomposing a matrix, say :CAI

These matrices can be interpreted as showing, in the case of Mi], the correlations
due to the first component alone, and in the case of [[R]-[C1]] the correlation matrix
with the intercorrelations  due to [CU removed. The same procedure can now be repeated
to remove the effect of 1:02] from [[R]-[C1 ]]. In actual fact, and because the third
ei g envalue is se small (0.014980), the residual matrix calculated above, and the matrix
due to [C2], are both very similar. For the record the matrices for [C2] and [C3] are
both given below. The reader should check a few selected elements to ensure that
the method of construction is understood.

Note the use of exponential notation akin to that used in BASIC languages to allow
for the small magnitude of the numbers (E-3 = 10 -3 ); in all cases figures are given
rounded to 5 significant digits, and they may not agree in the ]ast places with those
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of Daultrey (1976). Just as the eigenvectors themselves are orthogonal, so are the
matrices; that is [Ci][C2] = 0, etc. As the successive subtractions would lead us to
suspect, it is the case that:

[R] = [a] + [C2] + [CM
and the reader should check this by straightforward arithmetic. For example:

r(1,1) = (0.75342 + 0.24470 + 0.00i8789) = 1.00000
r(3,1) = (0.78694 + (-0.20638) + 0.0027379) = 0.58330

to within the limits of the rounding errors at five significant digits. This is a rather
different view of the matrix structure of [R] than the one usually presented, but it
may nevertheless prove useful. In reverse it might be used to specify the correlation
structure of [R] from hypothesized components, although it may not prove possible
to ensure that such components are orthogonal to each other as they are constructed.
If they are not orthogonal then a subsequent Component Analysis along the lines
indicated here and in Daultrey (1976) would not recover them.

An altogether different method is available for reconstructing the original
matrix using the eigenvectors and the eigenvalues. If [N] is a matrix (sometimes called

a diagonal matrix (sometimes called the SPECTRAL MATRIX) whose successive terms are
the eigenvalues of [R], then the following equation reconstructs [R] from its
eigenfunctions:

This equation is often used in a rearranged form as an elegant statement of the basic
eigenfunction problem: i.e. to find a matrix CN] such that:

In other words, find a linear transformation, [N], that will, so to speak, squeeze the
diagonal matrix of eigenvalues out of the given matrix [R]. It may be noted that in
either case it does not matter what form the eigenvectors take: unit variance, all
elements divided by the largest value, all elements summing to 1, or any other form:
they all yield the same result. The first equation is the basis of an interpolation
method in problems connected with projecting population growth in a series of regions,

to accomplish the same change that the original matrix will perform in one iteration.
Hence the new matrix could be used to interpolate, or to extrapolate over a partial
time period. Another use of the method would allow us to construct the correlation
matrices for specific models.

- 31 -



Note that the computation proceeds from left to right, and the effect of the diagonal
matrix is simply to multiply the ith column of [N] by the ith eigenvalue.

If we now take Daultrey's example with the eigenfunctions laid out as tabulated
above we get a good approximation of the original [R] matrix, the numerical shortfall
being due to using the figures rounded to 5 significant digits; if the fu]l accuracy
of the computer solution for the eigenfunctions is used then [R] is accurately
reconstructed. There is one advantage of using the eigenvectors 'in unit variance form;
the inverse, [N] -1, is merely the transpose of [N', i.e. [N] -1 = [N]T , an equality that
holds whenever a matrix is what is called ORTHOGONAL (ORTHONORMAL in some texts,

which computes out to, working from the left:

Finally to conclude this section some minor technical matters that are useful
to know. Occasionally, and especially in small examples or in structures with a lot
of symmetry, repeated eigenvalues are found, i.e. exactly equal values. In this case

eigenvectors can still be found but they arenot unique,and their numerical values
should not be taken as meaningful. Another case that may be encountered is that
of a zero eigenvalue(s). Once more the corresponding eigenvector is meaningless, and
the zero eigenvalue indicates that the Determinant of the original matrix is also zero
since the product of all the eigenvalues of a matrix is equal to the Determinant: thus
if any one is zero, so is the Determinant.

(iv) CONSTRUCTING THE INVERSE FROM THE EIGENFUNCTIONS

which will be found to be equal, to the first 5 significant digits, to

The reader should use the formula in section IV (iv) (c) to check that these values
are the exact values in [A]-1 . In the expression above, [N] -1 = [N] due to symmetry
in the very small 2 x 2 problem, the matrices would be different in a larger example.

VI EXAMPLES AND APPLICATIONS

The following sections introduce many of the specific matrices and techniques discussed
in the earlier sections, although in all cases greater depth will require the reader
to pursue the topics in other CATMOGs or specialised texts. At all times the reader
should be ready to re-read earlier sections if the approach to the materia] discussed
below seems difficult or unfamiliar. As an aid the relevant sections are referenced.

(i) THE SOLUTION OF SYSTEMS OF EQUATIONS

This section will look first at exact solutions, i.e. where the number of known data
points, n, exactly equals the number of coefficients required in the equation, and then
at Least Squares solutions where n exceeds the number of coefficients required.

(o) Exact

Inhomogeneous systems

Systems of equations expressed in matrix form are solved by using the matrix inverse,
and indeed this was one of the motivations suggested in the Introduction. To pursue
that example we can take the formula for the inverse of a 2 x 2 matrix, given in
section IV(iv)(d) to find that the required inverse is:
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That is to say, the boundary between the two crops occurs when the price is 5 and
the distance is 100km. If the market price should change to be [16 10] then the so]ution
would become [4 120], and this solution is reached at the cost of merely one more
matrix multiplication.

As another example we will take the problem of fitting a plane exactly to three
data points, the simplest possible case of a linear Trend Surface (Unwin 1975 CATMOG
5). The data in the Table below show the height of the shoreline of pro-glacial Lake
Iroquois, a late-glacial lake that occupied the Lake Ontario basin, at three different
spatial locations. Because the shoreline is well defined the use of three heights to
specify it is not as dangerous as might appear. The plane through these points defines
the ancient water surface of Lake Iroquois, now tilted as a consequence of differential
isostatic uplift. The data is taken from published NTS maps for Canada, the mixed
units reflect that source, although I have adjusted the spatial coordinates by the
removal of a constant quantity from each axis: a change in the origin of the coordinate
system.

Table of data on pro-glacial Lake Iroquois

Site z, Shoreline ht (ft) U, Easting (km) V, Northing (km)

Hamilton 365 0 14.8
Toronto 425 39 60.3
St Catharines 355 45.2 0

The solution required is to find z, the height, as a linear function of the spatial
coordinates U and V:

z = a + bU + cV

For matrix solution this system is set up as follows, by substituting each data point
into the equation:

365 = a + b0 + c14.8
425 = a + b39 + c60.3
355 = a + b45.2 + c0

which is then reorganized using the formal rules of post-multiplication of a matrix
by a vector (see IV (iii) b) as:

Notice the appearance of the column of is. These are, in effect, a specified set of
coefficients attaching to the constant or intercept a, but which to save pedantry
are not normally written in the usual a]gebraic presentation. However, their apppearance
is essential in the matrix version to keep order and to keep actua] algebraic positions
open. The system is represented compactly by the form:
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where [y] is the vector of heights, [X] is the matrix of known spatial locations, and
[a] is a vector of unknown coefficients. The solution is achieved by pre-multiplying
both sides by [XT' (see IV (iv) (a)):

Since by definition MAX] = [D, (see IV (iv) (a)) and then [I][a] = [a] (see IV (iii) (e)),
the solution can be expressed as:

This type of equation system, and its solution is termed INHOMOGENEOUS. With the
use of the matrix inverse program given in the appendix the inverse may be found,
and post multiplying by the vector [y], we get in full:

Thus the solution to the problem is that the plane is given by:

z = 347.6 + 0.164U + 1.178V

from which all the necessary information about the tilt of the old water surface may
be extracted. One may argue that the solution could be reached far faster by
straightforward elimination. In a particular case this may sometimes be true, but once
we are in possession of the inverse (and if it is obtained by computer it is easy to
store within the computer system as a data file) then repeated analysis for different
values of the dependent variable (the left hand side of the equation) is very quick.
For example, suppose that the vector of heights is re-examined and is determined instead
to be [367 420 355] then a single post-multip]ication of the inverse already obtained
(an option in the program provided) reveals that the new solution would be [350.9
0.09052 1.087]. In this way we can examine the sensitivity of the solution to variations
in the dependent variable.

Thus the use of the inverse has some very specific virtues, and they can be
seen from the very structure of the matrix solution: [X] is known to contain only
the values of the independent variables U and V, and is separate from the dependent
vector [yl. If [XT' is singular, i.e. the inverse fails to exist, then it is a sign of
linear dependence in the original data comprising [X). This implies that the data for
one location can be constructed as a linear combination of the other points: in more
familiar geographical parlance it is an example of auto-correlation, albeit of an extreme
kind. The solution would be to choose different points.

The solution form [y] = [X]-1[a]  is extremely common in applications of matrix
algebra, especially when it is realised that quite often the matrix [X] is composite,
the result of various initial manipulations of the problem. Later sections will illustrate
examples of this type.

Homogeneous systems
Some equation systems are more awkward to solve because re-organisation may involve
one side of the equation equalling 0. For example in the case of eigenvectors the basic
form of the equation is that:
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are an infinity of solutions, all multiples of each other. In this case it is necessary
to fix one element of [e] at a set value. It is convenient to set the last value equal
to 1, and then to obtain all the other elements as (unique) ratios with respect to
it. In this instance it is necessary to reduce [A] by deleting the last (bottom) row,
and to rewrite the last column (minus the bottom element) as a separate column vector,
(-1)[r] = [-r], with the sign changed on all its elements, on the right hand side of
the equation. Call the [A] so reduced [A-], call the last column of [M, with the signs
changed and minus the bottom element, [-r], and call the first (n-1) elements of the
vector [e-], then the initial system is written as:

That is to say, the system has been reduced to an inhomogeneous set of equations
that can be solved by finding an appropriate inverse. As a specific numerical example
consider Daultrey's examp]e considered earlier (see V (iii)).

Recalling that the third element in the eigenvector was set to 1.0 by hypothesis then
the eigenvector is [0.9574 1.0965 1.00] which may be scaled as required. The solution
procedure is therefore the same as in the previous section, but the matrix is initially
adjusted before the inverse is computed, and this will be typical of the use to which
the inverse is put.

(b) Least squares

Geographical problems most often have the property that the number of data points
available are in excess of the number of coefficients required in the equation that
is being fitted to the data. The fit, however, will not be exact and the method of
least squares is used to find a solution which assumes (amongst other things) that
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there is no error in the independent variables, the x's, and which minimises the sum
of the squares of the differences between the actual y values and the predicted values.
This is the only solution that is valid if an unbiassed estimate of y is required, but
the least squares solution can also be used as a basis for computing alternative solutions
that have other uses in terms of representing the general relation between the variables
(Mark and Church 1977, Mark and Peucker 1978).

The final equation boils down to the same procedure as before: use the inverse
to solve [y] = [[X][a] where [a] is the vector of unknown coefficients, [y] is the vector
of terms including the cross products of the dependent variable y with the various
independent x's, and [X] is the matrix containing the main elements of the Normal
Equations. In detail, and as an example for a case where there are two independent
variables, the algebraic and statistical problem is to find the coefficients in:

In matrix terms these are written:

and in simple form:

[y] = [X][a]

tile will now see how matrix formalities can be used to obtain this form for solution
from the initial data set. The initial data set will be set up like this, as a data
matrix [D], for the subsequent matrix manipulations. I shal] use Unwin's data (CATMOG
5 1975), although the reader should note that for xi and x2 below Unwin uses x and
y, and y below is Unwin's z, (the y* column is used later in this section):
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The column labelled dummy is necessary to reproduce the Normal Equations. If we pre-
multiply this data matrix [D] by its own transpose [M T the reader can check that
the result will be to produce (in this case) a 4 x 4 matrix [S] which contains the
following terms:

[[D]T[D] = [S] =

Note that the dummy column enables the summations of the individual variables to
be achieved, and in addition it produces the term N, the number of cases. Numerically
the matrix is:

However, it is clear that the first row is surplus to the Normal Equations, except
that the term Ey 2 can be used to obtain the correlation coefficient for the regression
equation if that is required later. Thus the Normal equations are obtained by deleting
the first row, and then writing the first column separately to the left hand side
of the equals sign, as a vector [y] which contains the cross products of y with the
various x's, in addition to its own summation. The matrix which remains after these
alterations is [X], the terms including only the x's, and the term N, the number of
cases. When, as would normally be expected, the manipulation is done by computer, it
is an easy matter to delete the first row, to partition the matrix [S] into the two
terms [y] and [X] as described above, and to add the vector of unknown coefficients
[a]. The solution is completed in the normal fashion by finding (X] -1 and post-multiplying
by [y] to find [a].

In effect the problem has now become an exact one: find a vector of coefficients
[a] which satisfies the Normal Equations exactly, and which also has certain desirable
properties with respect to the original data matrix [U Therefore, the problem is now
reduced to solving:

These results agree with Unwin who gives [4.95 2.11 1.87]. As was the case with the
exact solutions obtained earlier, the virtue of the inverse is that it is available for
further use. In the case of the Least Squares method there is one extra step, however.
Because the vector [y] contains cross products of y with the various independent
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variables, the x's, these terms must be computed before another set of coefficients
may be calculated. For example, suppose that Unwins's spatial data represents average
annual rainfall at the given spatial locations. Then suppose that we wish to compare
this surface with that for one particular year. The matrix [X] contains only terms
pertaining to the number of locations, N, and the various terms including only the
x's, the spatial locations. Thus to reuse [X] -1 with this problem we need only compute
a new vector, [y*7, using the column labelled y * in the table giving [D]. The necessary
terms are specified in the first row (or column) of [S]. They may be computed by
substituting column y* for column y in the table. Then we need only compute the
first row of the new [S] (i.e. a vector times a matrix operation) since the terms with
N and the x's are unchanged, and [y*]  is obtained easily by deleting the first element
of the first row. The reader should check that therefore [132 318 367] = [y*]. Then,
in the usual way [a] = [X]-1[y*] = [-0.157 2.49 4.19]. This solution predicts (small) negative
quantities of rainfall at the spatia] origin of the grid, despite an observed value
of 7 units! However, since both [y] and [y*] are fictitious in this instance we need
not be too . upset, and it draws attention to the fact that the solution is not guaranteed
to make physical sense, and often it is the residuals, the differences between the
observed and the expected values, that are most useful in analysis. However, this is
straying beyond the boundaries of this CATMOG.

(ii) MARKOV CHAINS

Markov chains were the subject of the very first CATMOG (Collins 1975) and most
expositions find matrix algebra a convenient notation to describe them. Although one
may start with a probability or transition matrix, [P], showing the probability of moving
between states of the system being modelled, in most empirical applications it is usual
to begin with a tally matrix [T] which records the number of moves between states
of the system. The states of the system are indexed by the rows and columns of the
matrix. For example, Collins uses the example of Lever (1972) whose initial tally matrix
for a system of manufacturing businesses in five states: four spatial zones, and a
'birth' 'death' and 'reservoir' state, and recorded over a ten year interval, was:

Let [1] be a column vector of is (III (iv)) then [T][1] = [r], and [r] is a vector containing
the row sums of [T]. Now let [D] be a diagonal matrix (III (v)) whose successive elements
are the elements in [r], then [P], the transition matrix for the system, is given by:

[FI = [D]-1 [T]

The reader should note that [D] -1 is merely [D] with each diagonal element changed
to its reciprocal (confirm it with the inverse program!) In this case [P] is:
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The matrix illustrates some typical aspects of empirical transition matrices: the diagonal
values are large:- most 'moves' are 'stay puts', and most off-diagonal  elements are small
and close to zero. The two immediate possibilities for analysis are (a) to find the
equilibrium or fixed state to which the system is tending as moves take place in
accordance with the transition probabilities, and (b) given an existing distribution,
what wil] be the distribution in the next few steps of the process?

The section on eigenfunctions illustrated that a step by step iteration of a
vector through a matrix will, given time, tend to the fixed vector: the principal
eigenvector. This is exactly the behaviour observed for transition systems, Markov
Chains. Thus if we take a row vector M

t at time t, the subscript, then:

and the second part of the problem is solved. Repeated iteration of the process solves
the first part of the problem, and provides information on the nature of the convergence
to equilibrium. However, in the spirit of the previous section it is possible to find
the fixed (probability) vector, [N, directly if it is so wished. In this case we should
like the vector to be such that the sum of its elements equals 1.0: i.e. MINT = 1.0.
Some algebraic manipulation shows that if [12] is the initial transition matrix then

solves the problem. Note that the left hand side of the equation expresses the solution
in the form used in the earlier section, but it requires that [P] be in its transpose
form: another example of manipulation prior to solution. In the centre is [O which
is a row or column vector at whim: an example of the fact, remarked upon above,
that the row or column convention is primarily for notational convenience and has
little intrinsic meaning of its own. Likewise [1] acts as a column vector on the left,
as a row vector on the right. Note too that all the terms within the large brackets
are matrices, [P] as discussed, [M is a matrix of ones, and ID is the identity matrix.

I shall not reproduce the full inverse but the reader should use the program
to check that the fixed vector is found to be:

Eventually therefore this fixed vector would predict that the distribution of firms
to be approximately [65 56 104 155 1069] (multiplying by 1449 and rounding to the
nearest whole number). The initial distribution of firms may be seen from the row
sums of the original tally matrix IT], so that [v]1 can be taken to be [212 73 99
95 1000], this being for 1959. The distribution for 1969 is found from:

Once more the number of firms has been rounded to whole numbers. The most noticeable
changes are the decrease in state 1 and the increases in states 4 and 5, the latter
representing 'deaths' of businesses. These tendencies can be seen to be in the same
direction as the proportions on the fixed vector would predict. An important point
to note is the fact that the total number of firms is not allowed to change in this
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computation, and this is because the principal eigenvalue of [P] is equal to 1, a point
guaranteed by the fact that the row sums of (12 ] are exactly equal to 1 by definition
(see V (ii)). If genuine growth and decline is to be modelled then this requires additions
to the matrix, usually on the main diagonal, a topic that will be explored a little
further in the next section.

This method has an associated penalty: if n is not a simple power of 2, and because
there are n 3 calculations for every multiplication of two n x n matrices, there may
be more calculations involved than in a direct iteration. However, a compensating benefit
is the fact that [P]n contains direct information on the probability of n-step transitions
between states. The reader may follow up interpretations of this type in Collins (CATMOG
1 1975) for Markov Chains, and in Tinkler (CATMOG 14 1977) for the case of access
in networks represented by (0,1) adjacency matrices.

Collins also shows that using a result due to Kemeny and Snell (1967) many
other properties of Markov Chains can be computed from the so-called Fundamental
matrix, al

The latter relation depends on computing (p] from the expression given earlier. [A]
is what is called the limiting matrix of (1 5 ]: the matrix whose every row is formed
from (p], the fixed vector of [P].

As a final remark, note that iterating vectors with [P]-1 will reverse the entire
process, although' there is no guarantee that in reverse [O will remain non-negative,
as would be required for a probability vector. The principal eigenvalue of (PT' will
be 1, but if (Pr' has negative elements then [v] itself may become negative eventually.

(iii) POPULATION MATRICES AND INTER - REGIONAL POPULATION MOVEMENT

In the previous section Markov Chains were used to move quantities between states
of a system subject to the strict proviso that the quantity under study remained
exactly conserved. It neither grew nor declined. In many systems this is not a realistic
requirement, for example in population systems viewed either as cohorts moving from
one censal age group to the next, or between different regions of a spatial system.
The following exposition is based on various accounts by Rogers (1968, 1971, 1975).

In the first instance consider a very simple closed population system with just
four age groups. The term 'closed' means that there is no migration. Establish a matrix
IS] which 'survives' a population age group from one census period to the next with
a proportion that is equal to, or more usually less than, 1. For pedagogical convenience
and to save space assume that age groups and census periods are twenty years, rather
than ten years. Transition systems in general can be written either with flows indexed
from the ith row to the jth column, or in the transpose form with the flows going
from the jth column to the ith row. Mathematically the results are identical and the
form adopted is either a matter of convenience or convention. The transpose form often
saves space, and in this case is standard in the source material. Therefore the [S]
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The terms such as 2s3 indicate the survival proportion for the group moving from
group 2 to group 3 during the census period. The 4s4 element allows people in group
4 to 'survive' in that group for more than one twenty year period, i.e. its a catch-
al] group including some individuals who are over eighty. The proportions to enter
in this table can be computed from life tables, or taken from the census. In this
instance I shall invent some plausible values (on the basis of various examples given
by Rogers). However, the [S] matrix includes only half the story. The proportions, being
less than 1 allow for wastage. i.e. death. Births on the other hand have to be handled
differently since they originate in different proportions from different age groups.
All births obviously enter age group 1, and those that do enter survive with a common
survival proportion to group 2. However, different age groups have different fertility
rates because fertility is age specific. Call the matrix concerned with birth On Then
it is written:

the stable vector of population proportions by age group, under the assumption that
the rates in [G] remain unchanged. For [G]  above it may be found by iteration that
the principal eigenvalue is 1.234987, and the eigenvector, expressed as proportions
summing to 1 is [0.343 0.274 0.216 0.168]. Although the eigenvalue seems large, it refers
to a twenty year period: taking the twentieth root yields an annual growth rate of
1.0106, a rate of only Just over 1% a year.

The problem of population distribution in the next few censal periods may be
studied by repeated post-multiplication of [G], starting with the present distribution:

Suppose that the distribution is [45 30 40 20], with sum 135, at the present (time
0), then the next three periods will be:

The vector after three time periods may be compared, as proportion's, to those predicted
by the eventual fixed vector:

with a notation similar to that for [S]. Again I have invented some plausible figures
for the right-hand matrix. The element 111 represents teenage births which obviously
enter the same age group in which they originate. Presumably the element 4b1 is zero
in this system: no births from females over 60! Note that the birth porportions also
include a survival component: they enter the age group as an age specific proportion
of the originating age group; they then survive to the next age group with a survival
proportion. Both these computations are included in the proportion in the table.

Growth in any population system is obviously a balance between survival (the
polite form for death!), and birth. Since [S] and [B] account for these separately we
can add them to obtain the population growth matrix [[G]:

[G] = 03] + ES]

One demographic problem is to calculate the intrinsic growth rate for the entire
population system, and to predict the structure of the population in future age periods
as a function of the .existing rates (as reflected in [G]), and of the numbers presently
in each age group. The matrix gives the proportions, and it is similar to a transition
probability matrix in this respect. However, its row and column sums no longer equal
1, and so its principal eigenvalue is no longer constrained to be equal to 1. It has
been shown by mathematical demographers that the intrinsic growth rate is given
by the principal eigenvalue of [G], and the principal right-hand eigenvector shows
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The model given above is a single region model, but with relatively little effort
it may be extended to allow for migration between different regions. In this case the
matrix for each component region must be estimated. I shall term it the [B+S] matrix,
which is not to be confused with the [G] = [B] + [S] matrix, because in the S components
the proportions also include a reduction due not to death, but to emigration. However
there is now a much larger matrix in which the [B+S]  matrix for each region appears
along the diagonal, and an [M] matrix, for migration, appears in an off-diagonal position:

In this formulation the numbers index the separate regions being considered, and 12M1]
indexes migration from region 2 to region 1, and the growth matrix [G] represents
the entire inter-regional system. The general [jMi ] matrix is structured as follows:

with a similar notation and format to the [S] matrix used previously but with the
exception that the m indicates a migration between regions which accompanies the
change between age groups: i.e. it is a survival matrix for between region use, whereas
[S] acts only within the region. Since the migrants deplete the [S] matrix age groups
for the region they are coming from, the elements in [S]  are adjusted to allow for
this emigration. Rogers (1971) gives a small concocted example involving three regions,
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which will be illustrated here. Large scale examples for a full range of age groups
and several regions are very space-consuming, although they are no different in
principle.

In order to save space in writing the matrix a common factor, i.e. a scalar
equal to (1/12) = 0.083333, has been extracted from the matrix (see II (ii)). The regional
partitions have been indicated to help the reader:

The eigenvalue is large, as in the previous example, but as was the case before
it refers, even in this concocted example, to a lengthy age group, say of the order
of 20 to 25 years, so that the actual annual growth rate would be as low as 0.4%
to 0.6%. Of more interest is the variation in growth rates due to the initial population
distribution, which in this case is perfectly even. Because feedback effects can only
take place through births, which naturally all occur into the first age group(!), it
takes some time for growth to stabilise, and with it the population distribution. The
sequence of growth rates for successive twenty year periods is: 1.0833, 1.0256, 1.1302,
1.1674, 1.0808, 1.1383, 1.1201, after which the rate stays within a single percentage point
of the eventual equilibrium value. The very low rate at the second iteration is due
to the large number of individuals in the first age group resulting from the first
iteration, and who cannot give birth in that time period. However, this large young
component in the population then gives rise to high growth rates in subsequent
iterations, before their increasing age reduces their fertility. It is a similar effect
to the well-known baby-bulge phenomenon following World War II. Thus major
disturbances in population systems, such as are caused by wars, famine, and migration
take a considerable time to iron themselves out, and muted effects may be felt for
decades after the initial disturbance.
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(j1.1) INPUT - OUTPUT ANALYSIS

When an external demand is placed upon an economy, the total resulting output by
the economy is larger than external demand itself. This results from the fact that
in the working of the economy, each sector requires a certain amount, both from its
own sector, and from each of the other sectors merely to produce the amount the
external demand has placed upon it. The process is actually recursive, and infinite,
since each extra internal demand generates additional internal demands in the system.
Although infinite, the process generates (luckily!) only a finite amount of extra
production, but as a consequence each sector needs to produce more than that required
by the external demand. This outcome is usually termed the 'multiplier effect'.

The basic input-output model is usually set up from actual or estimated tables
of accounts measured in a standard monetary unit. We will assume in a first, and
elementary, example a two-sector economy composed of agriculture and industry, and
an external demand called 'households'. The two-sector economy is represented by a
2 x 2 matrix, [T], of coefficients, usually called 'technological coefficients.' Each
coefficient is less than 1, and it measures, in fractions of the basic monetary unit,
the amount that must be purchased by the jth sector from the ith sector in order
for the jth sector to produce one monetary unit's worth of output. The matrix of
coefficients is normally read column-wise, and each column must sum to less than 1,
or that sector will be purchasing as much in material worth as it is producing; a
state of affairs that is clearly unprofitable.

As a simple example, therefore, consider the following matrix:

The column vector [h] labelled H is the household demand which will be placed on
the two-sector economy.

The computation of the total output of the economy proceeds as follows. Each
element in the computation is represented as a post-multiplication of a matrix by the
vector [hi The household demand forms the first component and is computed as:

However, as noted above, and from the matrix CT] this demand requires that for the
agricultural sector to produce 100 units it must produce for its own consumption (116)th
of that output - (0.167)(100) = i6.7, and it must also supply the industrial sector with
goods of va]ue equal to (1/5)th of that sector's output - (0.20)(40) = 8. Exactly the
same argument goes for the internal demands necessary to meet the industrial sector's
output of' 40 units. It must buy (1/3)rd of the agricultural sector's output - (0.333)(100)
= 33.3, and (3/5)th of its own output - (0.6)(40) = 24. Adding these together the additional
output is (16.7 + 8) = 24.7 for the agricultural sector, and (33.3 + 24) = 57.3 for the
industrial sector. It will be seen that this is exactly equivalent to computing CMChi

which I will call [h(1 )]; the results of the first round of the computation:If in doubt,
the reader should write out the computation given above explicity, using letters for
the coefficients of [T], in order to be sure that the identifications are correct and
understood.
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Obviously these internal demands cannot be met out of the household demand
without reducing that demand. Consequently they constitute an additional demand on
the system, a demand that has to be met in an identical fashion to that created
by the household demand itself. Thus the arguments in the earlier paragraph have
to be repeated, except that [h(i)] is used instead of [h]. However, I showed that the
earlier argument was equivalent to computing the product (TM] = [h(1)], and so therefore
[T][h(1)] = [h(2)], the next term in the series, is, on substitution, equivalent to computing:

The same argument applies to the problem of meeting the demand now created by [h(2)],
so that in general the nth round of such demands is computed by the term:

and in principle the process continues and infinitum. Therefore the final demand, or
total production [p] required of the economy, can be found by computing the sum of
the infinite series:

Since we know in practice that economies do not produce infinitely, we would suspect,
correctly, that [O has a finite value. The obvious procedure is to compute the sum
term by term, carrying out the powering indicated, and with the observation that
it is permissible to factor out the common post-multiplying vector [h]:

Doing this we get, following the rules of matrix multiplication (IV (iii) a):

if the sum [S] is taken to just three rounds. The problem is - how many rounds should
the computation be carried to? The simple answer is, to as many as cause the final
sum to converge: i.e. not to increase by a significant amount as further rounds are
added in For this to happen it is obvious that some power of [T] must eventually
become virtually zero. From the numerica] example above it is clear that [T] is slowly
getting smaller. In fact, the principal eigenvalue of [T] controls how fast [T] (or any
matrix) grows, or in this case, declines. Without actually computing the eigenvalue we
know from a result given in section V (ii) that the row and/or column sums limit

This convergence of the matrix sum to a finite value is useful in itself, but
it enables a more direct so]ution of the problem using the matrix inverse. By analogy
to the rules for the convergence of power series with a common arithmetical multiplier,
it may be shown that a matrix power series also converges, given the right conditions:

and then the solution using the inverse is:

Numerically therefore:

and then the inverse may be found by program or from the formula in section IV
(iv):

The problem may now be solved completely by using the original demand vector [h]
as a post-multiplier:

The whole problem may now be summarised as follows:

where the terms have already been defined in the paragraphs above. The problem is
structurally very similar to other solutions involving the inverse. However, in this
instance reversing the equation (multiply both sides by [[I]-[T]]-1), to express [h] as
a function of [p], we get:

which is removed from the initial definition of the problem, which involved only [T]
and [h]. The difference lies in the various rounds of demand which had to be computed
and which led to the definition of [I-T] as the sum of all these rounds.

We may notice that the final solution indicates that the partial solution by
successive sums was a long way short of the final convergence, although the speed
of the convergence depends inversely on the principal eigenvalue of [T]: the smaller
it is the faster the convergence, and some estimate of this can be obtained from the
row or column sums, as we noted above.

Finally, we may inspect the [S] matrix to see the details of the multiplier process.
First of all we may wish to subtract [I] since this merely ensures that [h] is contained
in the final production [p]. Then we can see the way in which the different sectors
of the economy are stimulated, either by themselves, or by other sectors. In this instance:
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and it is clear that the industrial sector is the strongest element in the economy,
despite the fact that the direct demand for its products is much smaller than for
the agricultural sector. An [S] matrix may be examined element by element, or it may
be aggregated as required as a basis for comparing different sectors, or groups of
sectors. Obviously sector comparisons may be made by computing [1][S]  or (1][[S]-[I]],
which gives the column sums, and ISM] or [[S]-[t]][1] , which gives the row sums. The
one indicates total purchases into the sector, the other total sales out of the sector.

Clearly, an identical approach to this can be used however many sectors there
are in the economy, provided the data are available. Similarly the sectors may be split
regionally to determine regional and sectoral multipliers. If we take the same system
of technological coefficients and split them between two hypothetical regions in such
a way that the purchasing between the regions by the different sectors reflects the
different product mix in the different regions, then we may get a basic matrix such
as:

In splitting up the system, each sector in each region shows the dollar amount purchased
has remained what it was in the single sysem: 0.50 for agriculture, 0.80 for industry.
However, it has been assumed that each sector will purchase more from its own region
than from the other region, and in fact industry in region 2 purchases nothing from
industry in region 1, and in region 2 the mix of products that agriculture buys is
split differently from that in region 1, although the total outlay, 0.50 remains the
same.

The solution of this system, for the (h] vector shown, is:

The failure of industry in region 2 to purchase from industry in region 1 is reflected
in the low total production for that element: 80.50 compared to more than double the
value, 164.37, for industry in region 2. Likewise agriculture in region 1 out-performs
region 2 because industry in both regions purchases much more from agriculture in
region 1 than region 2. The anomalous value of 1.23, for purchases by region 1 industry
from region 2 industry reflects the assymetry in the original inter-regional purchases,
whereby region 2 industry did not purchase from region 1 industry at all.

One major use of the [S] matrix is as a tool for exploring the effect of small
changes in demand, while the technological coefficients are assumed to remain stable.
For example what will be the impact of increasing the demand for agriculture in region
2 by 5 units, compared to the same increase for region 1 industry?
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The easiest way to look at this is to use only the incremental vectors as post-
multipliers of [SL an approach that yields the marginal productivity. For example, using
[0 5 0 0] (region 1 industry) will produce a marginal output of [2.66 9.41 1.12 6.15]
for a total increase of 19.34 and [0 0 5 0] (region 2 agriculture) will produce [1.33
1.50 6.33 4.36], for the much smaller marginal output of 13.52. Thus it is possible to
trace the impact of particular inputs sector by sector and region by region.

Finally, the astute reader may notice that the total productivity of the two
region system differs from that of the one region version, even though the total demand
placed on the system, Eh], is the same. This arises from the variable pattern of inter-
regional purchases, cumulated over the various rounds of buying. As a result agriculture,
viewed over the entire system, produces 182.03, slightly in excess of the 180 in the
single region system. On the other hand, industry as a whole produces a little less:
244,87 compared to 250 in the single region system. Total productivity is therefore reduced
to 426.90 compared to 430.

VII CONCLUSIONS

It is usual to conclude CATMOGs with some comments pointing out both the limitations,
and the potential extensions of the technique under review. In the case of a branch
of mathematics, such as Matrix Algebra, it must be remarked that the methods outlined
in this booklet are merely an introduction; the full resources of this methodology may
be followed up in any of the texts mentioned in the bibliography. It is probably safe
to say that there can be few "processes" that a geographer might wish to model,
that have not already been explored by mathematicians, and it would be most unwise
to suggest mathematics has limitations, especially ones that a geographer might readily
encounter. The only problem is that the appropriate methods may be buried in advanced
textbooks or research journals.

Perhaps the most important caveat that must be entered is that the user of
these (and indeed all) mathematical methods must provide, for self and readers, a clear
interpretation of the meaning, in terms of the problem, of the matrix methods employed.
Considerable emphasis has been placed upon this viewpoint in the exposition above.
Attention to it will, in itself, point up the limitations of the methods employed and
suggest ways in which a more sophisticated model may be built. Rather than the
mathematics having intrinsic limitations, it is far more probable that it is the data,
or rather the lack of it, which acts to constrain the methods that can be applied.
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APPENDIX 1

PLEASE READ THESE NOTES

These programs are written in APPLESOFT, for an Apple 11+ with 48K, and a 40 column
screen. There are no graphics, input is through the keyboard, and output is to the
screen. Thus they should be easily converted to other dialects of BASIC, if the following
notes are borne in mind.

IN APPLESOFT

1) HOME clears the screen and returns the cursor to the top left corner.
2) The colon, : , allows multiple statements on a line.
3) The semi-colon, ; , causes printing at that location and overrides

the automatic tabulation of APPLESOFT. SPC(3) inserts 3 spaces in the
output, etc., SPC(n) would insert n spaces.

4) Dimensions need not be dimensioned via the DIM statement unless they
exceed 10. Since indexing starts at 0 this actually provides 11 elements
in each array dimension. NO dimension statements are provided in
these two programs. See notes in (a) below.

5) APPLESOFT allows two-dimensional matrices. Other BASICS may not.
6) APPLESOFT is highly compatible with MBASIC running under C19111 on Apples,

and these programs should run as they are printed in MBASIC.

(a) COMPOTE THE INVERSE OF A MATRIX

This program allows entry of the matrix to be inverted through the keyboard and
is essentially menu-driven. A number of options are available to alter the input matrix
to that needed for several of the uses to which the inverse is put. This saves you
having to make the changes manually before you begin, and thereby reduces the
possibility of errors. The user may wish to adapt the program to print its answers,
and to read and write from disk.
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A self-check of the answer is provided, i.e. [[A][A]-1  is computed and compared
to [t], the results reported, and the user may inspect both the inverse and the computed
[l] matrix. Computations are in single precision so USE this check facility. Inversion
may be unstable for large matrices, which is why dimensions are limited to 11. (You
could easily change this, see the notes above). MBASIC in Apple CP/M is compatib]e
with this program and offers double precision, see appropriate manuals.

The program allows you to enter repeated vectors to post-multiply the inverse.
If this is not your wish it returns you to the matrix entry option.

If the matrix is SINGULAR it stops. Otherwise use CTRL C to exit.
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( D) COMPUTE EIGENFUNCTIONS OF A REAL SYMMETRIC MATRIX

This program allows entry of the matrix to be analysed through the keyboard, with
output to the screen. Write down all the answers you need as they appear on the
screen, or add your own writing and/or saving routines. Although the ana]ysis is designed
for a real symmetric matrix, it will find the first real (left-hand) eigenvector of a
real asymmetric matrix: that is it can be used to find the fixed vector of a probability
(transition) matrix.

Iteration is performed under keyboard control and may be terminated when the
eigenvalue and/or eigenvector estimates displayed on the screen are stable enough. The
program operates using the 'power and deflate' method. It is NOT programmed to stop
after N eigenfunctions, which has the merit that the residual amount still left, and
due to accumulated rounding errors in single precision, may be inspected. In APPLESOFT
use CTRL C to escape.
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Inversion of a matrix is easy. Assume you have read in a matrix M4. Then
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APPENDIX 2

MATRIX MANIPULATION USING MINITAB

MINITAB is a very user-friendly statistical package, developed at Pennsy]vania State
University. For those who have access to it on mainframe computers it may provide
a useful alternative to the micro-computer programs in Appendix 1 . You should enquire
of your Computer Laboratory if it is installed on your mainframe. Please note that
what f allows is merely illustrative of what MINITAB can do; it does not in any sense
constitute a manual on MINITAB, it is more like a typical session.

Let us assume that it is available, then if you log in and call MINITAB you
can read in a matrix using the READ command. Suppose, for instance we wanted to
multiply the matrices A and B (see page 16 and 17). The MINITAB prompt MTB > can
be followed by the command:

REAL 2 by 3 matrix M1 (return)

snd the two rows of three numbers entered in free format. Note that you have to
give the dimensions (rows and columns) of the matrix and to label the matrix. The
label must begin with M, followed by a number, Unless you are attempting something
very involved it is unlikely that this number will exceed 15!

So, for the multiplication we have

To calculate eigenvalues, use the EIGEN command and store the results in a column.
For instance, using the matrix [R] on page 29:

Finally, we demonstrate how matrix manipulations in Markov Chain analysis msy be
performed. Refer to the description of how to calculate the fixed probability vector
(pages 39-40). In brackets below on the right are the descriptions of what is being.
done.
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MINITAB  will tell you if you are attempting an inadmissable matrix operation. You can
also send results to a file if you do not wish to transcribe them from the screen.

MINITAB reference manuals are available if your installation supports the
package, A MINITAB Student Handbook is published by Duxbury Press.
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