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1. INTRODUCTION

Much statistical analysis is concerned with finding structure or pattern in
data and in this sense it is exploratory. However, exploratory data
analysis (EDA) is a term applied to a distinctive approach to data
description and the measurement of association. Here, the techniques, which
are very simple to use, are designed to enhance pattern recognition and to
uncover data structure. The methods are particularly associated with the
American statistician, John Tukey (1977) although some graphical exploratory
techniques have a fairly long history, having been developed initially as
quick alternatives to classical methods in the precomputer age (Quenouille,
1959). An essential distinction can be made between exploratory and
confirmatory methods, that is, the conventional statistical methods based on
classical theory and designed to test hypotheses. There is an exploratory
equivalent of most confirmatory techniques covered in introductory texts in
statistics written for geographers but an informed decision about which
methods to use in dealing with a particular problem - exploratory or
confirmatory, or both - requires an appreciation of the broad objectives of
quantitative analysis in geography. Thus, before discussing particular
exploratory methods, I will say something about the place of data analysis
in geography and the characteristics of an exploratory approach which make
i t suitable for geographical investigations.

(i) The process of scientific inquiry

To begin, it will be useful to identify differences in approach to
scientific analysis as they are projected in the conventional view and the
exploratory perspective, respectively. How scientists go about explaining
real-world phenomena is usually portrayed as a sequential, step-by-step
process, culminating in a decision about the statistical significance of a
pattern or a relationship. This sequence is often represented diagrammetri-
cally as a series of boxes connected by arrows which indicate the correct
order of events in the analysis. Most accounts suggest that we proceed from
an 'a priori' model to a hypothesis; we then apply a test to the data and
either confirm or verify the hypothesis, in which case we move on to theory
construction, or we reject the hypothesis and think again about the 'a
priori' model. The investigation is represented as a systematic and logical
procedure with discrete and clearly defined stages.

A more realistic account of actual practice, however, would indicate
that theoretical understanding and analysis are enmeshed in such a way that
we cannot separate out the stages of an investigation in the way suggested
by the conventional account. We already have a theory, however poorly
articulated, when we begin the analysis and this helps us to define the
problem and select the data; having used statistical methods to identify
pattern and relationships in the data, we may then clarify our original
theory which helps us to examine the data from a modified perspective the
second time round. Thus, the process of data analysis is an essentially
circular process rather than a linear sequence and our theoretical under-
standing increases in an incremental fashion. As Marshall (1985, p. 126)
suggests, 'knowledge evolves through the interplay between theory and
observation'. There may be a lot of deliberation involved, with frequent
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return visits to the data in order to make more sense of them in terms of
our theoretical expectations.

The argument in favour of an exploratory approach to analysis is that
it encourages and facilitates repeated reference to the data and a cautious,
sceptical attitude to theory, although this should be characteristic of any
kind of analysis. In EDA, the former is emphasised in the display of data
in several alternative forms and the latter by focusing on anomalous or
problematic cases. It involves immersion in the initial problem. In
practice, this is rather different from the conventional ayproach to
quantitative analysis, which presents two particular obstacles to under-
standing. First, with ritual adherence to hypothesis-testing and decision-
making on the basis of probability values, there is a tendency to see a
result, that is, the confirmation of a hypothesis, usually at the 95 percent
level of probability, as a successful conclusion of the analysis. This is
i mplicit in the use of terms like 'verification', 'success' and 'confirmation'.
Several writers have suggested that hypothesis confirmation only discourages
researchers from considering new ideas. Tukey (1969, cited by Diaconis,
1985, p. 3), for example, refers to classical statistics as 'a ritual for
sanctification' and Nozick (1974, xiii) has argued that, in this kind of
analysis results are effectively fiddled. '...you push and shove...until
finally almost everything sits unstably more or less in there; what doesn't,
gets heaved far away so that it won't be noticed'. Clearly, it is not
necessarily the case that scientists using conventional statistical
procedures act in this way but this kind of abuse may be encouraged by the
rigid adherence to textbook procedures.

The problem of sanctification, recognized by Diaconis, does not arise
in exploratory data analysis because there are no results in the sense that
a relationship is deemed to have been confirmed or not confirmed. Decision-
making is, of course, critical for many practical problems, for example, in
medicine or engineering, but in many geographical investigations, the primary
use of quantitative analysis is to identify structure, which may then be
explained by other methods. We often do not need the decision-making
apparatus of inferential statistics, which could be a hindrance to under-
standing. The fact that we are not drawn into making decisions about the
significance of a relationship is a positive attribute of the exploratory
approach.

The second attribute of conventional quantitative analysis which
presents difficulties is that it may be projected as progressive when it is
not. Wilson and Kirkby (1975, p. 4), for example, maintained that
geography 'had moved beyond a period of orderly description, via a so-called
quantitative revolution into statistical analysis, and into a period when
mathematical analysis is becoming both commonplace and fruitful'. This
suggests that 'orderly description' is a rather inferior and less worthwhile
pursuit than mathematical modelling and this downgrading may account for the
neglect of the descriptive devices of exploratory data analysis by
quantitative geographers. It is also the case that mathematical modelling
in human geography has been heavily criticized both for its normative
assumptions, which tend to mask fundamental economic and social cleavages,
and for the tendency to translate theory into stultifying practice (Olsson,
1 978). Exploratory data analysis does not have these heavy ideological
undertones and an important part of the case for exploratory methods is that
they fit easily into research designs using mixed modes of analysis. Thus,
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apart from the possibly complementary roles of exploratory and confirmatory
analysis, EDA might be used to isolate a problem which can then be
investigated, say, by questionnaire surveys or by participant observation.
Advocates of EDA do not, or should not, make exclusive claims for the methods.

(ii) Statistical properties of exploratory methods 

What is it, then, that makes EDA an attractive alternative to conventional
methods of data analysis? The essential characteristic of exploratory
methods is that they are resistant. This is a very similar idea to
robustness which, according to Kendall and Buckland (1971, p.131) applies
to a statistical procedure which is not very sensitive to departure from the
assumptions on which it depends. Likewise, resistance means that summary
statistics are not unduly affected by extreme or anomalous values. However,
while all exploratory techniques are resistant, not all confirmatory methods
are robust. In the case of descriptive statistics used in conventional
analysis, which are based on Gaussian or normally distributed probabilities,
the arithmetic mean, variance and standard deviation are very much
influenced by unusually high or low values. In EDA, much use is made of the
median, for example, as a resistant summary statistic by itself, or to
derive other statistics. As the middle value in a sample, it has much
greater resistance than the arithmetic mean which may well be useless as a
measure of central tendency. Resistance is also important in describing
relationships between variables. A least-squares regression, for example,
will be unduly affected by an extreme data point; a resistant regression
line fitted from median values will not.

If exploratory techniques are resistant, we can attach more significance
to extreme values or residuals. As Besag (1981) has suggested, residuals are
important in classical analysis but they are of paramount importance in
exploratory work. From a philosophical point of view, we could argue that
an emphasis on residuals is essential in developing theoretical ideas if we
are to use empirical analysis in critical tests of existing theory. If we
accept only statistically significant fits as 'results', the tendency will
be for existing theory to remain unchallenged. Thus, theoretical under-
standing will not progress. As Diaconis (1985, p. 1) suggests 'there is a
disinclination to revise belief after further observation'. More generally,
Rock (1979, p. 64) has argued 'the very word 'knowledge' is mischievous
because it suggests a finality or consummation. It should not be a noun but
a verb. So defined, knowledge becomes knowing...it constitutes and is
constituted by its objects as it unfolds'. The most interesting aspect of a
problem may be not, for example, that a regression line adequately
summarizes a relationship but that a few values clearly do not fit. It is
these residuals that may provide clues to other operating factors not
hypothesized initially and the difference between the 'a priori' model and
the actual observations is more important than the fit in understanding what
is going on. Thus, data exploration along these lines creates more problems
that solutions. The inspection of residuals for structure or pattern, which
is central to exploratory analysis, helps the analysis to unfold.

A further important feature of EDA, which relates particularly to the
question of scientific practice discussed above, is the emphasis on the
display of numerical data and the use of graphical summaries. Exploratory
methods encourage repeated reference to the original data and to patterns in
the data, which makes it easy to identify interesting cases as the analysis
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proceeds. In conventional analysis, the data are necessarily summarized to
the point where individual cases are lost from view. One obvious but often
neglected point in support of graphical statistical methods is that the
assessment of the outcomes of tests depends very much on visual perception,
even when much of the analysis is numerical, as, for example, in regression
analysis. We need graphics but graphics which clarify variability and
structure in data and do not disguise or mystify.

In the examples of exploratory methods discussed below, the spatial
dimension of the problem is emphasized because it is often important in
geography and it can be used to provide an additional perspective on the
data. An exploratory analysis in a spatial dimension usefully extends
analyses of frequency distributions. Having isolated exceptional or
anomalous cases on a frequency curve, mapping these cases will enable us to
assess their importance as elements of a spatial distribution. In particular,
the contiguity of apparently exceptional values and the rest of the data
will suggest whether or not these cases are different and deserving
particular scrutiny. In this sense, mapping data, particularly residuals,
is an obvious complement to Tukey's methods of data display and analysis and
this makes EDA particularly appropriate for geography. There should be
continuous movement between the individual data point, the frequency
distribution and spatial representations of components of the frequency
distribution. What Balchin (1970) termed 'graphicacy' and numeracy are
essentially fused. (Figure 1).

Combining these three elements in the analysis can be seen as a means
of getting to grips with a problem, possibly as a prelude to a confirmatory
analysis although it may be decided that exploratory methods alone are
sufficient. In the following account, there is no attempt to provide a
comprehensive guide to exploratory techniques. Rather, I will focus on
methods which have immediate spatial applications, namely, methods for
describing and analysing single variables and a resistant regression
procedure. For a fairly comprehensive introduction to the subject,
particularly for social science applications, Erickson and Nosanchuk (1979)
Understanding data is highly recommended. Recent developments in EDA are
discussed in two companion volumes, edited by Hoaglin, Mosteller and Tukey,
Understanding robust and exploratory data analysis (Hoaglin, 1983) and
Exploring data tables, trends and shapes (1985). These two books discuss
applications in both physical and social science and they are intelligible
to anyone with only a little knowledge of mathematics.

II THE STEM-AND-LEAF DISPLAY 

(i) The basic display 

The first problem in'analysing a data set is to characterize the sample or
batch of numbers as a whole. Before discussing the method, it is necessary
to introduce a number of alternative terms to those customarily employed in
descriptive statistics. Employing more jargon may seem perverse but the
object of this is to provide a more graphic and intelligible terminology than
that used in classical statistics. It also serves to set exploratory methods
apart from classical methods.

6
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Thus, when describing the shape of a frequency distribution, we refer to
symmetr , and peakedness. A curve which is asymmetric but with a
sing e peak willeither straggle upwards towards the high values (positive
skewness), which mean that there is a relatively high frequency of low
values and the frequencies are attenuated towards the high end, or straggle
downwards towards the low-end (negative skewness). Peakedness, as the term
suggests, describes the concentration of values in particular frequencies
(Figure 2). Apart from the general shape, we note gaps in the frequency
curve and the presence of any values which are detached from the main body
of the data. The point of this first inspection is that it may provide clues
to the processes which have contributed to variability within the batch.

In order to describe the general shape characteristics of a distribution,
some kind of graphical representation is necessary, the histogram being the
most familiar device used for this purpose. The grouping of values into
class intervals involved in constructing the histogram, however, means losing
sight of the numerical values in the first stage of analysis which, for the
ruminant quantifier, is undesirable. The stem-and-leaf display is a better
alternative because the data values comprise the building blocks used in
constructing the frequency distribution. It is a histogram where the
columns, or rows, are strings of numbers. This makes it possible to
identify individual cases in the context of the frequency curve. This is
particularly important in the identification of unusual or exceptional
individuals, which will be located in the tails of the distribution or will
be detached from the continuous part of the curve.

Table 1: Cholera deaths in London, 1 849 (per  10,000 population) 

Kensington 24 City of London 38
Chelsea 46 Shoreditch 76
St. George, Hanover Sq. 18 Bethnal Green 90
Westminster 68 Whitechapel 64
St. Martin in the Fields 37 St. George-in-the-East 36
St. James, Westminster 16 Stepney 38

Marylebone 17 Poplar 71
Hampstead 8 St. Saviour, Southwark 153
St. Pancras 22 St. Olave, Southwark 181
Islington 22 Bermondsey 161
Hackney 25 St. George, Southwark 164

St. Giles 53 Newington 144
Strand 35 Lambeth 1 20
Holborn 35 Wandsworth 1 00
Clerkenwell 19 Camberwell 97
St. Luke 34 Rotherhithe 205
East London 45 Greenwich 75
West London 96 Lewisham 30

The procedure for constructing the basic stem-and-leaf display can be
demonstrated using the data in Table 1, showing cholera deaths per 10,000
population for London districts in 1849 (British Parliamentary Papers, 1854-
1 896). Of particular concern in this case was the threat of infection to the
bourgeoisie - this prompted parliamentary attention to the question - so one
point of geographical interest would be the extent to which the disease spread
beyond the working-class districts of the metropolis. A more general problem
in the case of an epidemic disease will be in the relationship of extreme
values to the rest of the data because this will provide some clues about
the diffusion process. Here, we are concerned essentially with the rate and
extent of spread from one or more sources.

To build up the display, each number in the table is partitioned into
the leading digit(s) and the trailing digit. The leading digits form the
stem (equivalent to the class interval in the histogram) and the trailing
digits the leaves. Noting the range of values in this case, a suitable stem
interval would be 10. Thus, the first entry in the table of cholera deaths,
Kensington, appears as:

stem leaf

2 4

and all other values in the interval 20 to 29 have their trailing digits
entered against the 2 stem. In the display, the stems appear in ascending

or descending order, as follows:

0
1
2

etc.

Then, the leaves are assigned to their stems. This can be done in two steps,
first, by writing down all the trailing digits without regard for order,
which creates a dirty stem-and-leaf, and then ranking the leaves on each
line to give a clean stem-and-leaf. Note that, in the process of constructing
the display, all the values in the original table are put in rank order so
that prior ranking of the data is unnecessary. The two displays are shown
below for the cholera data.

dirty clean

0 8 0 8
1 8679 1 6789
2 4225 2 2245
3 75548680 3 04556788
4 65 4 56
5 3 5 3
6 84 6 48
7 615 7 156
8 8
9 607 9 067

10 0 1 0 0
11 11
12 0 1 2 0
13 1 3
14 4 14 4
15 3 15 3
16 14 16 14

17 17
1 8 1 18 1

20 5 (205)

9
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One additional feature of the display should be noted. There is a single
detached value which is bracketed in order to indicate that it may warrant
special attention. It is an essential feature of the exploratory approach
that we focus on data values which may be exceptional because they could
provide clues to unsuspected processes. It is also evident that, without any
analysis, a few summary values and significant points in the distribution
can either be read-off or worked out with a little mental arithmetic, for
example, the median (45.5) and the modal class (30 to 39). Clearly, it is
just as easy to characterize the shape of the frequency distribution as it
would be using a histogram. This completes the first stage of the analysis
but there are other ways of compiling the frequency distribution which may
be more appropriate when the data are in a different form.

(ii) Alternative formats for stem-and-leaf displays 

For some batches, using an interval of one leading digit per stem may give
too many leaves per line - that is, the display looks too crowded and it is
difficult to read. If we think of the problem of displaying the data as one
of scaling the stem- and-leaf according to the number of ways we can factor
1 0, that is, 1x10 , 2x5 and 5x2 (Emerson and Hoaglin, 1983, p. 18), there are
then three ways of dividing up the data values to give different allocations
of leaves per stem.

The 10x1 case is described above. For a 2x5 arrangement, the stem is
split, with leaves from 0 to 4 in a* row and those from 5 to 9 in a . row.
Suppose we had a sample of house prices in £000's covering a small range,
say, from £25,000 to £30,000 the display would be like this:

26* 3
26. 7889
27* 01144
27. 558889
28* 0014

etc.

More ingenuity is required to divide the stem into five classes. This
can be done by assigning zeros and one's to a* row, two's and three's to a
t row, four's and five's to an f row, sixes and sevens to an s row and
eight's and nine's to a . row, as in the following plot of beta radio-
activity values for 46 states of the United States (Mason, 1970):

1 *
t 33
f 5
s 667777
1. 99
2* 0000000111
t 2333
f 555
s 66
2. 8899
3* 000
t 33
f 55
s
3. 8
4* 0
t 2

(0.53)
(0.55)

(range = 0.13 - 0.55 picocuries per m 3 )

If, alternatively, a display appears too straggly, it is possible to
make it more compact by having more than one stem per line, separating the
respective leaves by a colon. Thus, we could represent the frequencies of
cholera deaths more compactly in the following form:

0,1 8:6789
2,3 2245:04556788
4,5 56:3
6,7 48:156

etc.

This format is messy, however, and difficult to read. Although it may
convey the overall shape of the distribution better than the 10x1 arrange-
ment, it should be avoided if possible. In fact, there is often no single
best design for the stem-and-leaf diagram. There is a rule of thumb for the
maximum number of lines, L 

ax
	(10 x to n), which will indicate if

splitting or doubling-up stem values is advisable. However, it is probably

best to experiment with alternatives to see what information different
versions suggest.

Two further variants of the display may be useful. If we want to
compare two closely related samples, one possibility is to put them back-to-
back with a common stem (as in an age-sex pyramid). For example, comparing
gross population densities for London boroughs in 1961 and 1981, we can see
similarities in the shape of the distributions but a change in the spread of
values:

10 11



1961 1981

9 1 9
11 2 019

99766543 3 23455799
841 4 0345
420 5 1478
73 6 77
3 7 3349

64 8 8
6 9 023

94 1 0 7
3 11 6

65 1 2
72 1 3

If we want to complement the display of numerical values with
geographically specific information, names can be substituted for numbers.
This may be useful in analysing a number of batches of data pertaining to
areas, where we do not want to lose sight of individual cases while examining
overall variability. In the following example, the 1981 population densities
for London boroughs are shown separately for inner and outer boroughs, using
abbreviated names. The difference in this case does suggest that the 'inner'
and 'outer' dichotomy has some demographic significance:

Inner 	low Outer 

BROM
HAV, HILL, RICH
ENF, BARN, NOUNS, BEX, KING
CROY, HARR, SUTT
RED, MERT, BARK, GREEN
EAL, WAL, BRENT

NEW
LEW, HARI

T. HAM, WAND, STHK, CAMD
WEST

LAMB, HAM, HACK
ISL
KEN

high 

A third possibility, not illustrated, would be to put numerical values
on one side of a back-to-back diagram and the corresponding names on the other.

The purpose of these diagrams is to give a clear indication of the
position of an individual case within the overall frequency distribution,
particularly with a view to noting anomalies which may be pursued in greater
detail. In a particular analysis, not all the formats illustrated here will
be appropriate but it would be a good idea to combine alternatives in an
experimental way in order to extract the maximum amount of information from
the data. More emphasis is put on this stage of the analysis in exploratory
work than in confirmatory statistics precisely because it may yield important
clues to problem formulation. Thus, experimenting with displays is to be
encouraged.
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III. LETTER VALUES AND THE ANALYSIS OF SEVERAL BATCHES 

This display of data in a stem-and-leaf diagram is the first step in a
search for structure but the displays can also be used in conjunction with
summary statistics to provide more specific information on the characteristics
of a frequency distribution. These summary statistics are called letter
values. The properties of letter values are described here before returning
to stem-and-leaf displays to consider their utility in analysing spatial data.

Letter values are 'a collection of observations drawn systematically
from the batch, more densely from the tails than from the middle' (Hoaglin,
1983, p. 33). Their most important characteristics, by comparison with
conventional summary statistics, such as the sample arithmetic mean and
variance, is that they are resistant measures and are, therefore, more
reliable indicators of variability and central tendency than their
confirmatory equivalents.

(i) Defining letter values

Any letter value is described in terms of its depth which is its upward rank
(from the lowest to the highest value) or its downward rank, whichever is
smallest. Starting with the median, we can now define a number of letter

values which locate increasingly outlying fractions of the frequency
distribution.

Thus, the median or middle value has a depth of (n+1)/2 (if n is even,
we interpolate between the two middle values). Moving out from the middle
of the distribution, the depth of the fourth (also known as the hinge, or
more familiarly, as the quartile) is: 

-
depth of median + 1)/2. (The term

'fourth' is preferred to the alternatives because we can then refer to other
partitions in the same terms, that is, as fractions). Proceeding to the
outer eighths of the distribution (depth of fourth + 1)/2 and, generally,
the dept

h
 of an outer fraction of the distribution is: (previous depth) +1/2.

In practice, it is unlikely that the outer 1/32 or 1/16th would provide
additional useful information unless the sample size is very large but it
will often be the case that we want to examine progressively smaller portions
of the tail of a distribution or, alternatively, move in from the outer areas
towards the middle in order to identify any interesting features of a
variable. In order to identify the depth of any value in a distribution
quickly, the depths can be entered as a separate column in a stem-and-leaf
display. This is simply the accumulated frequency of values from the top and
bottom of the distribution. Thus, for the population densities of London
boroughs, 1981, the depths column appears as follows:

Depth

1 1 9
4 2 019

1 2 3 23455799
16 4 0345
16 5 1478
1 2 6 77
1 0 7 3349
6 8 8
5 9 023
2 1 0 7
1 11 6

13



In this case, the median falls between 45 and 51. If the median value had
been one of the leaves or came between two leaves on a line, that line would
be omitted from the accumulated frequencies and the entry against it in the
depths column would be the number of values on that line (shown in brackets
in order to indicate on which line the median is located). An example is
given shortly.

(ii) Letter value displays 

The values indicating the various fractions of the frequency distribution,
together with the extremes, can be entered in a diagram called a letter value 
display which provides a concise summary of batch characteristics. The
minimal diagram is a 5-number summary:

where the tags or labels at the side of the diagram indicate sample size (n),
the depth of the median (M), the depth of the fourths (F) and the depth of
the extreme values (which is of course, 1). This summary is particularly
useful if we have to compare a number of batches (Emerson and Strenio, 1983,
pp. 68-69). To give an example, in the case of the 1981 population densities
of the inner and outer London boroughs, the 5-number summaries give a neat
and concise indication of the salient differences between the two zones:

#13 inner London #19 outer London

M 7 79 M10 37

F 4 73 72 F 5.5 32.5 43.5

I 8 116 1 19.0 57.0

Similarly, this format could be used for a 7-number summary:

where FL , FU and E L , E U indicate lower and upper fourths and lower and
upper eights, respectively. Additional information, which can be added to
the display, includes the fourth-spread and any outside values, which are
discussed below.
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(iii) Measures derived from letter values 

In addition to such overall summaries, it is desirable to have other measures
of spread and concentration based on letter values. The most useful
resistant measures of the bunching of sample values are based on the fourths.
The first is the fourth-spread or mid-spread, dF, which is simply FU-FL
(more familiar as the inter-quartile range). The second is the tri-mean, 
TRI for short, which is defined as (FL + FU + 2M)/4. Although this uses more
data points than other measures of central tendency, it is still resistant.

The fourth-spread has particular application in the detection of
exceptional values. In locating such values, we need to find a distance from
that part of the distribution contained within dF to the tails of the
distribution, beyond which we can claim that any data points are outside 
values. This term can be used interchangeably with 'outliers' because both
suggest that these extreme values may have the same underlying behaviour as
the rest of the distribution. As Kendall and Buckland (1971, p. 109) put it:
in a sample of n observations, it is possible for a limited number to be so

far separated in value from the remainder that they give rise to the question
whether they are not from different populations or that the sampling
technique is at fault'. In an exploratory analysis, however, we are
concerned only with isolating possible anomalies, not with confirming their
difference from the remainder of the observations. Generally, we remain
cautious about identifying exceptional cases. From inspection of the array
in a stem-and-leaf display, observations may appear to be outside values
because they are detached from the frequency curve. However, arbitrary cut-
offs can be calculated to provide a consistent basis for the isolation of
outside values. Conventionally, these are F L - 1.5 dF and FU + 1.5 dF .
Because most distributions that we encounter in geography straggle upwards,
high outside values are more likely than low outside values. In fact, the
lower outside cut-off is usually beyond the range of the data. It is
i mportant to bear in mind that the outside cut-off does not unambiguously
partition the data. It is preferable to think of it as a fuzzy boundary
around which observations are most likely to exhibit different behaviour to
the main part of the distribution. Thus, we should inspect values which lie
just inside the cut-offs - adjacent values - as well as outside values. In
fact, having used letter values to define outer fractions of a frequency
distribution, it is desirable to work in from the extremes as far as the
mid-spread looking for further elements of pattern in the distribution of
values.

There are direct spatial applications of this approach to the
description of a variable. Mapping different fractions of a distribution
may indicate areas which are anomalous or, alternatively, form part of a
larger pattern and this will suggest directions for subsequent investigations.
For example, if we look again at the beta radio-activity values for the
coterminous states of the USA in the following stem-and-leaf display, there
are two detached values which clearly warrant a closer look. For example,
these two states, Nevada and Arizona, are, in fact, beyond the outside cut-
off. If we map these states ; then map the upper eighth (minus the outside
values), then the upper-fourth (minus the upper-eighth plus outside values),
we can build up a picture of the concentration of radio-activity (Figure 3).
Adding the upper fourths and upper eighths to the map puts the outside values
into context and provides additional information which helps in deciding
whether or not the outside values are exceptional or simply 'highs' in a
larger pattern.
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While the state is not a particularly useful spatial unit for analysis, it
is evident that there are some contiguous elements in the pattern which need
further investigation, particularly in relation to weapons-testing sites,
nuclear power generation, natural background radiation and the atmospheric
diffusion of radio-activity. Apart from noting that examination of the
spatial dimension of the problem in an incremental fashion may discourage the
analyst from rushing to conclusions, it is worth stressing that we can easily
identify the original data values while summarizing the characteristics of
the frequency distribution and the spatial distribution, which is an
important advantage of using a stem-and-leaf display in conjunction with
letter values in a mapping exercise. They provide complementary perspectives
on a problem.

IV. BOX PLOTS 

While letter value displays are concise and can be used to give a fairly
full specification of a frequency distribution, it may be the case that we
need a more immediate impression of spread and asymmetry than can be
indicated by a set of numbers, particularly when there is a large number of
batches to compare. For this purpose, the boxplot (alternatively known as
the box-and-whisker plot) is a useful graphical device, providing a
diagrammatic summary of the information in a basic letter-value display.

(i) Using a boxplot 

If we have a letter-value display of the summary values, it is an easy step
to portray this information in graphical form as a boxplot. For example,
the radiation data for the United States can be summarized as:

Figure 3. Levels of atmospheric radioactivity in the United States, 1966
(in picocuries per m3 ).
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n=46 picocuries per m 3 

M 23.5 0.23

F 12 0.20 0.30 outside cut-offs:

1 0.13 0.55 0.04, 0.46

(outliers: 0.53, 0.55)

and the corresponding boxplot is shown in Figure 4.

The vertical line inside the box locates the median. Spread is
indicated by the length of the box, defined by the position of the fourths,
and the position of the median line in the box conveys something of the
skewness or straggle of the distribution. Thus, in Figure 4, the closeness
of the median line to the left side of the box indicates upward straggle.
The line extending from the box to the shorter vertical line gives the
position of the upper and lower outside cut-offs in relation to the main body
of the data and the dots locate the outside values. It is, therefore, easy
to read off the essential features of a frequency distribution from the
boxplot. Apart from providing an economical summary, it is also resistant
because it is based on resistant statistics. By comparison, using the
sample mean and standard deviation to indicate the same characteristics of a
distribution would be misleading in the presence of a single 'wild' value.

Figure 4. A boxplot

The benefits of the boxplot become clearer when it is used to compare
a number of related samples. The population density data for London boroughs
might be appropriate for this purpose because the stem-and-leaf displays
shown earlier suggest significant changes over time and between inner and
outer boroughs which it would be helpful to examine simultaneously. The
plots of densities in Figure 5, showing spatial and temporal variability,
suggest a clear convergence of inner and outer boroughs although the lack of
overlap is maintained until 1981. This convergence will have resulted
primarily from change in inner London and we might reasonably suggest that
housing renewal and outmigration have caused a reduction in densities in
inner London, bringing it closer to the densities of the suburban boroughs.
Although the information is presented in a highly condensed form in the
diagrams, the essential summary characteristics of the samples are retained.
Information loss is slight and we would be able to refer to the individual
data in the stem-and-leaf displays which were used to calculate the summary
statistics.
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Figure 5. Boxplots of population densities for inner- and outer-London
boroughs

(ii) Removing levels and spread 

While it is possible to recognize patterns of variability by looking at
boxplots, as in the previous example, it is occasionally useful to focus on
one feature of a frequency distribution at a time when comparing a number of
batches. It could be the case that differences between the original boxplots
are not obvious or that there is a large number of comparisons to make and
the information contained in the plots is difficult to digest.

A systematic approach to this problem is to set aside summary values in
order to observe other effects. As a first step, for each sample in turn,
the median can be subtracted from the original sample values so that
differences between sample medians are removed as a source of variation.
This is called removing a level and the effect is simply to centre all
sample plots on zero, which makes it easier to observe differences in spread.
The second step is to divide the original values in each sample, with the
median subtracted, by the fourth-spread. This removes the effect of spread
and the data are now in standard form. Thus, the standard score =
(observation-level)/spread which is the exploratory equivalent of the z-score
for values in a normal distribution, that is, z = (x-x)/standard deviation.
Diagrammatically, the change from plots of raw data to standarized plots is
shown in Figure 6.
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Figure 6. Boxplots of city-size distributions, with medians removed

Figure 7. Standardisation of boxplots

Figure 8. Standardized boxplots of city-size distributions
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Emerson and Strenio (1983, pp. 65-70), in discussing applications of
boxplots, give the example of city-size distributions, where the boxplot can
be used as an alternative to rank-size curves to describe regularities in
city-size frequencies. It is a method which might be preferred to rank-size
models, when the latter are used as descriptive tools. Boxplots are more
simple to construct and they are solely descriptive, unlike rank-size models,
which have had an ambiguous role, as both descriptive devices and as process
models, with the processes ill-defined. The plots for sixteen countries are
rather difficult to read, however, and comparisons could be easier to make

i f level and spread were removed. The method is illustrated here with a
selection of European states taken from Emerson and Strenio's data set (from

the World Almanac, 1967). First, with the median removed (Figure 7),
variation in the spread of city sizes becomes the most obvious source of
difference, with a marked contrast between Sweden and England, for example.
This diagram also suggests variation in the symmetry of the distributions
but this shows up more clearly in the standardized plots (Figure 8); where
England is clearly different from the rest in the sense that city sizes
(excluding the largest city) are symmetrically distributed around the median
whereas the other states all exhibit upward straggle (note that, in the case
of Sweden, France, and England, the largest cities are outside values which
cannot be shown at this scale). There are serious problems of comparability
in using national census data on city sizes which suggest that it would not
be worthwhile pursuing this example very far, but it does illustrate the
possibilities, particularly where we want to compare a large number of
batches (see Erickson and Nosanchuk, 1979, chapter 4, for other examples).

(iii) A summary example 

The value of using a number of displays in combination can be demonstrated
in an investigation of a problem in coastal geomorphology where theoretical
knowledge is presently rather meagre and the discovery of patterns in the
data may suggest some directions for further research. The problem concerns
the development of salt marshes. From a general knowledge of processes, it
could be argued, first, that the height of the marsh increases with age and,
secondly, that the processes of sediment deposition lead to increasing
uniformity of height; an irregular surface in the early stage of development
gives way to a smoother, level surface. The data which are used to examine
these propositions, and to examine other unanticipated problems, comprise
samples of marsh levels (surface heights) in metres, collected for three
marshes on Scolt Head Island, Norfolk. These are, in order of increasing
age, Anchor, Missel, and Hut. Anchor Marsh is c. 20 years old, Missel Marsh
c. 80 years, and Hut Marsh c. 120 years.

Before any analysis, it was clear from inspection of the data that Hut
Marsh divided into two zones, referred to here as Hut 1 and Hut 2, with the
former markedly higher than the latter. Thus in the first look at the
distribution of values in stem-and-leaf displays we have four samples:
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Hut 1 

4.6 9
4.7 0333455677888888899
4.8 00011222223334455557778888999
4.9 0000011112222222333333333444445555666677777788888899
5.0 0111111122333344444445556667889
5.1 012334455569
5.2 01246
5.3 39
5.4 348
5.5 5
5.6 4
5.7 6889
5.8 9
5.9
6.0 278
6.1 4
6.2
6.3
6.4 5
6.5 5
6.6 26
6.7
6.8
6.9
7.0
7.1 5
.7.2
7.3 5
7.4 1
7.5 5
7.6 5
7
.7 44

7.8
7.9 3
8.0
8.1
8.2
8.3
8.4
8.5 4
8.6
8.7 16
8.8
8.9 8

(9.21)
(9.71)

(10.21)
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Missel Marsh 

1.5 6
1.6
1.7 35
1.8 259
1.9 05679
2.0 38
2.1 0125567788
2.2 1223335566667777888999
2.3 001111111112222222333334444455555556666666666667777777788888888899999999
2.4 0000000001111112222223344444555555678999
2.5 00001112222355556688999
2.6 00011234444555667778889
2.7 0011344466778888899
2.8 1122455666778889 Anchor Marsh 
2.9 03366
3.0 1 1.7 9
3.1 4 1.8
3.2 68 1.9 7
3.3 9 2.0 1
3.4 56 2.1 445799
3.5 4 2.2 0112344446677
3.6 0 2.3 1223456

2.4 0245568
Hut 2 	2.5 01123478999

2.6 2345599
1.7 1 2.7 12223357999
1.8 2.8 0034
1.9 2.9 0447
2.0 3.0
2.1 0788 3.1 0
2.2
2.3 579
2.4 023689
2.5 000224555556777788889
2.6 00022222233344455555566666677788889999
2.7 1111111222333333444444444444666666667777788888899
2.8 0001233344555566777889
2.9 02223446668
3.0 02344456679
3.1 0124556666899
3.2 0001234468
3.3 599
3.4 1
3.5 18
3.6 33
3.7 33
3.8 147
3.9 04
4.0 034
4.1 2

The absence of a single modal frequency on Anchor suggests that the
initial idea about the morphology of a recent marsh was correct. In contrast,
both Missel and the two Hut samples are highly peaked and the distribution of
heights appears to be in a lower frequency range on Missel than the latter
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which is consistent with the argument that height increases, but variability
decreases, with age. Hut 1 is anomalous, however. It is much higher than
the other marshes and the height distribution shows much more upward straggle
than the other samples. Thus, we must have reservations about the
comparability of the batches. Does Hut 1 reflect the operation of different
processes to those forming the other marshes?

In order to put this information into a more readily digestible form,
it is helpful to summarize the key parameters in letter value displays.
These indicate that, overall, there is no clear pattern:

While the individual letter values do not indicate a general increase in
elevation from the youngest to the oldest marsh, the tri-mean might be a
useful summary because it incorporates a-high proportion of the data, while
excluding the extremes. These means are: Anchor, 2.50; Missel, 2.47;
Hut 2,2.79; and Hut 1, 4.99, where TRI=(F + F + 2.median)/4. Again, the
results are not entirely consistent with the initial hypothesis.

We can now try boxplots, which may give a clearer indication of the
spread of values. The plots based on raw data (Figure 9) only underline the
difference between Hut 1 and the others. In particular, the large number of
upper outside values is curious. The other three batches are similar but, of
these, Hut 2 is the only one with outliers. Possibly, the presence of
outliers is connected with variation in marsh building material, sand giving
higher elevations than mud. If we subtract the median in order to get a
better view of spread (Figure 10), there are some suggestive patterns. In
particular, the reduction in spread with age (with the exception of Missel)
would be consistent with the idea of a levelling of the surface with increased
elevation but more samples would be needed to establish this with conviction.
A standardized plot was also tried but this provided no useful additional
information.
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Figure 9. Boxplot of marsh heights (in raw form)

Figure 10. Boxplot of marsh heights (standardised)

Thus, from this inspection, we could at least decide to consider Hut 1
apart from the other sample areas. This is, in fact, the inner zone of Hut
Marsh which has been subject to considerable human interference, with the
deposition of sand and construction of brushwood fences to encourage
accretion. The processes operating here are distinctly different from those
affecting the other marshes. In addition, the sample area of Hut 1 may
i nclude the boundary between marsh and dune coast, which makes its inclusion
in the analysis more inappropriate. The exploratory investigation also
suggests that more data collection and analysis would be required to test
the development model adequately. For example, an increase in the number of
sample points on Anchor Marsh would be desirable if valid comparisons were
to be made between this and other areas. Thus, the exploratory approach does
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appear to have served a purpose. It has picked up features of the data which
more highly aggregated methods of data description would have missed and it
has provided some pointers for subsequent investigations.

Thus, we can conclude that, in trying to make sense of a data set, it is
advisable to use a number of exploratory methods because they make use of
different amounts of information and may pick up different characteristics of
a frequency distribution, or have varying emphasis. This apart, sifting and
organizing the data repeatedly helps the investigator to gain a perspective
on the problem and to shape questions about patterns that emerge from the
analysis. For measured or counted data, stem-and-leaf displays, letter value
displays and boxplots could be used routinely in preliminary analysis. When
describing data collected by areas, maps of letter-values constitute a useful
complement to the methods for describing frequency distributions,
particularly where the objective is to identify problem areas or regions.
This theme is pursued in the next section, which deals with an exploratory
analysis of association between spatially-distributed data.

V. RESISTANT LINES AND RESIDUALS 

In the linear regression model, we are trying to predict values of y in terms
of x, assuming that there is a systematic linear relationship between the two
variables, plus a random component. Thus, in the equation y = a + bx + e,
the principal interest is in the line determined by the intercept, a, and the
slope coefficient, b, with randomness in the residuals, e, being one test of
an adequate fit. As I suggested in the introduction, however, in an
exploratory analysis, structure in the residuals may be more interesting than
the slope of the line because residual patterns may show up processes which
have not been predicted by the equation. Because the regression line is
resistant, it is possible to have both pattern in the residuals and a
reasonable estimate of the linear relationship (although there may be other
relationships not accounted for by the linear term). In the more commonly
used least-squares fitting procedure, by contrast, first, correlated
residuals violate the assumption of the model that the error term, e, is a
random component and, secondly, a single exceptional value can influence the
slope of the line to the extent that it becomes a fairly meaningless summary
of the overall relationship between the variables. Silk (1979, pp. 242-3),
for example, discusses a case where change in service employment in the
Reading urban area was regressed on the distribution of service employment at
the beginning of the period; apparently on the grounds that growth in employ-
ment would be positively related to the preexisting pattern. However, the
least-squares regression included one exceptional data point (the central area
of Reading) which reflected very rapid development of offices in this
locality during the period being considered. Because of the undue influence
of this data point on the parameters of the equation, the regression line is
of dubious value as a measure of the overall relationship between the
variables. As Emerson and Hoaglin (1983, p. 129) put it rather dramatically,
'A wild data point can easily seize control of the fitted line and cause it
to give a totally misleading summary of the relationship between y and x.'

There are several ways in which this problem can be handled. With
least-squares regression, one approach is to calculate the regression line
using all the data and, then, to recalculate the equation having removed
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aberrant data points. The different between the two lines indicates the
influence of the exceptional values on the overall pattern. Alternatively,
observations with large residuals can be weighted to reduce the influence of
these points on the slope of the line. Both these methods could be termed
robust. The exploratory approach is more straightforward, however. It
involves fitting one line which is derived from the medians of the
observations, divided into three more-or-less equal sized groups. Because
the median is a resistant measure, the regression line is also resistant and
exceptional values do not present a problem. At the end of this chapter, the
difference between a least-squares regression and an exploratory, resistant
regression, where exceptional values are present, is illustrated, using
Silk's Reading service employment example.

As with other exploratory techniques, the resistant regression
procedure is a means of probing the data to uncover structure. We start with
an approximation of the linear relationship:

y = a + bx + e

Which can be used to calculate a set of residuals from the predicted values,
where

As a second step, an iterative procedure to improve the fit may be
desirable (Emerson and Hoaglin, 1983, p. 134), but in many practical
situations in geography it may not be possible to fit a line that is anything
more than a rough approximation, in which case the iteration will be
irrelevant. If the data used in the regression are for areal units, for
example, the fit will be influenced by the level of aggregation of the data
which, in many cases, we can do nothing about so fine adjustment of the slope
parameter will only give an illusion of increased accuracy. Thus, a single
fit, followed by residual analysis, may be justifiable in some geographical
analyses. This kind of problem is discussed here, following an account of
the basic fitting procedure for a resistant line based on medians. For a
full account of iterative procedures, with worked examples, see Emerson and
Hoaglin (1983, pp. 129-163).

(i) Fitting a line 

The resistant method involves estimating three summary points derived from
the medians of the x, y data divided into three groups. Before Tukey (1977),
similar methods had been suggested by Bartlett (1949) and Quenouille (1959).
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Resistant regression of 1849 against 132 cholera deaths in
London (outside values are circled).

Figure 11.
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In the event of tied ranks, however, all x's having the same value are
allocated to the same group, making the method rather unsatisfacotry if there
is a large number of ties. There is no guide as to how many ties are
necessary before an analysis is invalidated, however.

The next step is to calculate summary points which are given by the
coordinates of the median x and median y within each group. Labelling the

and the slope parameter is used to find the intercept, as follows:

If the x, y scatterplot suggested that a linear equation was
appropriate, this procedure should give a reasonable estimate of the
relationship.

stem-and-leaf display of residual values and to identify outliers and letter
values, which will help to locate those residuals which depart substantially
from the estimated relationship. In residual analysis, transformations may
be advocated but there is a good case for using unmodified or raw residuals
rather than reaching for a transformation. As Goodall (1983, pp. 220-221)
has pointed out they are in the same scale as the original y values so we
can apply subject matter judgement to them'. With spatial data, the
residuals can be mapped and patterns of contiguity will provide some
indication of structure.

(ii) Cholera in London 

The use of a resistant linear regression is demonstrated in an analysis
of the 19th century cholera epidemics in London. Specifically, the problem
is to identify the spatial correspohdence between the 1849 and 1832
epidemics for thirty districts for which data are available in both years.
We could argue that the pattern of mortality in the two epidemics would be
broadly similar because of the relationship of the disease to environmental
conditions, assuming relative stability of areas of poor environment in
London during this period. From inspection of the data (Table 2) and a
scatterplot of the values (Figure 11), it is clear that a least-squares
regression would be inappropriate because there are a few very extreme values,
notably St. Botolph in 1832 and Rotherhithe in 1849, which would have an
excessive influence on the parameter estimates.

Table 2: Cholera deaths in London, 1 832 and 1849

1832(x) 1849(y)1 832(x) 1849(y)

Kensington 17 24 Bethnal Green 25 90
Hanover Square 1 3 18 Stepney 45 38
Chelsea 25 46 Poplar 57 71
St. James 38 68 St. George, E. 32 36
Marylebone 18 17 Hackney 2 35
St. Pancras 11 22 St. George 74 164
Islington 10 22 St. Olave 145 1 81
Clerkenwell 14 19 St. Saviour 1 31 153
Strand 32 35 Lambeth 38 120
Holborn 12 35 Wandsworth 14 100
St. Giles 53 53 Newington 45 162
City 29 38 Camberwell 37 97
Shoreditch 8 76 Bermondsey 71 161
Whitechapel 92 64 Rotherhithe 14 205
St. Boltoph 289 45 Deptford 28 65

29



Calculating a resistant line 

There are 30 observations, giving three groups of 10 for which the medians
are:

Thus, the equation for the resistant regression line is y = 11.82 + 1.39x,
which, judging by the scatter of residuals around the line (Figure 11), gives
a reasonable fit. The slope parameter does not suggest very much apart from
an overall increase in rates. A residual plot in the form of a stem-and-leaf
display, however, suggests some interesting features in the relationship:

(-369)
-7 6
-6
-5
-4 1
-3 226
-2 001
-1 224
-0 145
0 37
1 4
2 0
3 457
4 39
5 035
6 9
7
8 8

(174)

There are two predictable outside values - St. Botolph which had the
highest mortality in 1832 but was closer to the median in 1849 and
Rotherhithe, which had the highest mortality in 1849 but was low in 1832.
We did not need a regression analysis to identify these extreme cases but
when they are mapped, together with the outer eighths and fourths (figures 12
and 13) more interesting patterns emerge. The contiguity of the positive
residuals, locating markedly higher death rates in 1849 than 1832, suggests
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Figure 12. Cholera deaths in London, 1832 and 1849: positive residuals.

Figure 13. Cholera deaths in London, 1832 and 1849: negative residuals.
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a clear pattern of diffusion in south London. The negative residuals present
a more complex picture. An imaginative interpretation of the results would
be possible but, really, no consistent pattern emerges and the analysis would
have to move in a different direction in order to produce meaningful
information. A next step might be to consult the archives and the
epidemiological literature in order to identify the particular conditions
which were conducive to the spread of cholera.

In a case like this, where we should be conscious of imperfections in
the data, including incomplete reporting and wrong diagnosis of illness, plus
the problem posed by fixed areal units which are highly variable in size and
shape, a method of analysis which is unencumbered by statistical requirements
derived from probability theory seems a sensible one to use. In a similarly
problematic case involving air pollution data of doubtful reliability for
cities in the United States, Diaconis (1985, p. 13) maintains that exploratory
analyses of association have not only proved more appropriate than
confirmatory methods because of measurement errors and high levels of temporal
and spatial variability in the data but have been more successful in
identifying pollution mechanisms. In another example, Emerson and Hoaglin
(1985, pp. 241-275) demonstrate how the resistant procedure can be used in a
multivariate analysis, involving mental hospital admissions, where data are
similarly problematic.

(iii) Comparing a resistant and least-squares regression.

Fitting a resistant line to the service employment data used by Silk (1979)
to illustrate the application of least-squares regression, nicely illustrates
the affect of an extreme value on the slope parameter using the latter
procedure. The data are listed below, where x is service employment 1961,
and y is change in service employment 1961-66:

x y x y

200 0 1009 112
227 0 1056 266
234 9 1672 310
369 11 1880 984
399 6 2167 401
427 48 2462 456
550 18 2493 699
570 0 2827 535
707 141 3091 409
797 124 4409 816
834 129 29288 5187
903 21
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Figure 14. Service employment in Reading, 1961 and 1966: least-squares
(broken line) and resistant fits. (maximum xy value not shown).

Figure 15. Service employment in Reading: boxplots of residuals from
resistant fit (a) and least-squares fit (b).

In Figure 14, the broken line is the least-squares regression line and it is
evident that it has been flattened by the extreme x value (29,288) for
Reading central area) when compared to the steeper resistant line which has
a slightly more symmetrical distribution of points around the line.
Inevitably, therefore, the two methods give different patterns of residuals,
and as the boxplots of residuals in Figure 15 indicate, a different pattern
of outlying values. While the resistant method only approximates the
relationship, it is arguable that it gives a more reliable estimate than the
non-robust least-squares regression.

Although the resistant regression procedure is advocated here as an
alternative to conventional methods where wild values are present, the
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primary emphasis has been on residuals because the smooth or predictable
component of the data - that aspect of the problem expressed in the regression
equation - may well be unremarkable, often confirming existing, rather weak
theoretical expectations. Residual analysis helps to move the study on
because it is the identification of differences and anomalies that points to
unexamined problems. While the analysis of residuals from least-squares
regression is fraught with difficulties, particularly where the investigation
has a spatial dimension, an exploratory approach to residuals, using a
combination of stem-and-leaf displays, boxplots and residual maps, appears to
be statistically sound and potentially fruitful.

IV. CONCLUSION 

Since Gregory (1963, p. 18) published a quartile dispersion diagram of
rainfall variability, geographers have shown little interest in exploratory
approaches to data analysis. Seduction by inferential statistics and then
by systems analysis left more basic descriptive approaches out in the cold.
Many quantitative human geographers in particular pursued the goal identified
by Warntz (1973, p. 89), according to whom '...a heightening of the level of
abstraction is the significant thing'. Some erstwhile quantifiers then
rejected quantitative data analysis completely although at the time (the
early 1970s) they were probably unaware of Tukey's work on exploratory data
analysis.

Generally, the use of exploratory data analysis might be seen as a
return to methodological simplicity, to methods which are more in tune with
the objectives of geography as an empirical science than the classical
statistics and mathematics which have characterized quantitative analysis in
the subject. This does not mean that analysis is necessarily less
sophisticated or profound but it might be more realistic. In human geography,
specifically, it would seem possible to incorporate EDA in critical analysis,
combining modes in the way suggested by Castells in The City and the Grassroots 
(1983), for example, where quantitative ordering of data and qualitative
interpretation are integrated. EDA could be used quite effectively in
empirical research in human geography set within a broader framework of social
and political theory. Data analysis and investigations informed by political
and social theory are not incompatible so long as we remain conscious of the
fact that the production of data is part of the problem. We need to be
aware of the intentions of those who produced the data.

Two features of EDA make it suitable for this kind of critical enquiry.
The first concerns the question of fallibility. Practitioners of
quantitative social science have been criticized for making claims of total
calculability and for assuming a separation of act and value (Young, 1979,
pp. 63-74). This follows from an attachment to statistically significant
results which then assume an objective or reified existence. As Cochran
(1972, cited by Good, 1983) suggests, however, we can only claim to be
groping towards the truth' - an admission which exploratory analysts may be
more inclined to accept than those wedded to a model-based paradigm and using
classical statistical procedures. The former group may become more aware of
the complexities in data in the process of working through a problem. In
this regard, the implicit difference in the objectives of EDA and inferential
statistics has been expressed quite neatly by Good (1983). He argues that,
in probabilistic terms, EDA is concerned with partially ordered subjective
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probabilities rather than 'sharp' probabilities, where a clear boundary is
drawn between what is probable and what is improbable. In describing
variability in a sample using letter values, for example, we make a
subjective ordering of probabilities from the extremes to the middle but do
not rely on numerical cut-off points for the confirmation of hypotheses.
Rather, the process is one of 'successive deepening', that is, removing
successive layers of the data and suppressing different amounts of
i nformation at a time, in order to gain an understanding of data structure.

Implicit in much of the foregoing discussion of methods have been
claims for the utility of EDA in assessing the validity of established theory.
In regard to conventional scientific practice, Kuhn (1962) and Feyerabend
(1975) have argued that science is a highly conservative enterprise in the
sense that theories tend to be confirmed rather than rejected, particularly
i f they support the dominant ideology. Paradoxically, however, modellers
may have a cavalier attitude to data, ignoring irregularities when they are
impressed by the virtues of a model. As Kennedy (1979, p. 558) put it, in
her parody of systems modelling '...let the mathematical modelling of the
naughty world continue apace but let us not confuse those models with
reality.' Because the real world is in the forefront of an exploratory
analysis, or, rather, that part of it which can be represented legitimately
in quantitative form, this confusion should be less likely to occur. For
example, we have argued that, in regression analysis where most attention is
directed to anomalies or secondary patterns, the analyst should not be
seduced by the fitted line. Divorced from theory, EDA is useless, but as a
component of amixed-mode analysis, it could add strength to critical analysis
by ordering reality in suggestive ways.

In a narrower geographical sense, exploratory methods might help in
the resurrection of cartography, as has been attempted, without notable
success, in the use of inferential statistics to analyse spatial data. The
use of letter values to describe spatially distributed data is an instance of
successive deepening which may have value in cartographic analysis and the
same could be said for exploratory approaches to residuals where secondary
and subsequent patterns are inspected for contiguity. The simplicity of
this approach, rather than providing an excuse for rejection (because, it
might be argued, deep insights will only be gained by the use of
sophisticated methods) should be appreciated as a virtue. Thus, exploratory
data analysis, cartography and other graphics could be combined in a modest
attempt to uncover spatial structure and the routine use of these methods
would strengthen the claim that the study of geography is concerned both with
numeracy and graphicacy.
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