PROBABILITY SURFACE MAPPING.
AN INTRODUCTION WITH EXAMPLES
AND FORTRAN PROGRAMMES

N. Wrigley
CATMOG

(Concepts and Techniques in Modern Geography)

CATMOG has been created to fill a teaching need in the field of quantitative methods in undergraduate geography courses. These texts are admirable guides for the teachers, yet cheap enough for student purchase as the basis of classwork. Each book is written by an author currently working with the technique or concept he describes.

1. An introduction to Markov chain analysis - L. Collins
2. Distance decay in spatial interactions - P.J. Taylor
3. Understanding canonical correlation analysis - D. Clark
4. Some theoretical and applied aspects of spatial interaction models - S. Openshaw
5. An introduction to trend surface analysis - D. Unwin
6. Classification in geography - R.J. Johnston
7. An introduction to factor analytical techniques - J.B. Goddard & A. Kirby
8. Principal components analysis - S. Daultrey
9. Causal inferences from dichotomous variables - N. Davidson
10. Introduction to the use of logit models in geography - N. Wrigley
11. Linear programming: elementary geographical applications of the transportation problem - A. Hay
15. Linear regression in geography - R. Ferguson
16. Probability surface mapping. An introduction with examples and Fortran programs - N. Wrigley
17. Sampling methods for geographical research - C. Dixon & B. Leach
18. Questionnaires and interviews in geographical research - C. Dixon & B. Leach

Other titles in preparation

This series, Concepts and Techniques in Modern Geography, is produced by the Study Group in Quantitative Methods, of the Institute of British Geographers. For details of membership of the Study Group, write to the Institute of British Geographers, 1 Kensington Gore, London, S.W.7.

The series is published by Geo Abstracts, University of East Anglia, Norwich, NR4 7TJ, to whom all other enquiries should be addressed.
INTRODUCTION

(i) Purpose and pre-requisites

Since its introduction into geography in the early 1960’s (Chorley and Haggett, 1965) trend surface mapping has become one of the most widely known and widely used methods of spatial analysis in geographical research. Basically the aim of trend surface mapping is to decompose or separate a spatial series into two components, a trend or regional component and an error or local component. This separation is accomplished by specifying and fitting an appropriate trend surface model; appropriate in the sense that it captures the underlying regional structure or trend of the spatial series and leaves a local component showing no discernible systematic spatial variation. A trend surface model is essentially a linear regression model in which the explanatory variables are the geographical co-ordinates of each site or locality in the spatial series.

During the past fifteen years, as geographers have become increasingly aware of the assumptions, limitations and potentialities of regression models, a deeper understanding of trend surface models has developed. However, despite this deeper understanding, the range of applicability of trend surface mapping has remained virtually unaltered. One of the major reasons for this is the fact that until recently the trend surface method has been unable to handle one of the most important types of data collected and analysed by geographers. There appears to have been universal acceptance that variables to be mapped using the trend surface method must be measured at a high level, at least interval scale. Unfortunately for the geographer, a large proportion of the variables measured and utilized in geographical research, particularly in human geography, are measured at lower levels, at the nominal or ordinal scales of measurement. That is to say they are categorizations of an unordered (nominal scale) or ordered (ordinal scale) nature. As a result many of the variables measured and utilized in the course of geographical research have traditionally been viewed as unmappable by the trend surface method, and this has severely limited its range of applicability. Recently an attempt has been made by the author to free the method from this limitation. A technique has been presented (Wrigley, 1977) which allows the extension of surface mapping to the realms of categorized data, and which as a result provides an approach suitable for the imperfect types of data which are faced in geographical research. The technique has been given the name probability surface mapping and the maps produced are termed probability surface maps.

In the original paper outlining the probability surface mapping method, there was only space to introduce and illustrate the method in the briefest of fashions. The aim of this monograph is to consider the topic at greater length, to present examples and computer programs, and give sufficient detail to make the method available to all those who require it for practical research purposes. In the following sections the method will be reviewed and worked examples and the necessary FORTRAN computer programs will be discussed. The monograph assumes the reader is familiar with trend surface mapping as it has traditionally been used in geography (see the earlier CATMOG 5 by Unwin, 1975a) and with multiple linear regression (see CATMOG 15 by Ferguson, 1977). Prior consideration of the original probability surface paper (Wrigley, 1977) and the author’s CATMOG 10 (Wrigley, 1976) will prove useful but is not essential.
Before we embark upon discussion of the technical aspects of probability surface mapping the reader may find it helps to sustain his interest if he first has a taste of the potential of the method. Consider the following case. A marketing geographer wishes to investigate the trade area characteristics of a recently opened hypermarket. To assess the extent of the trade area and the level of market penetration within it, he conducts a household survey of shopping habits. Amongst other questions in the survey he elicits information from each housewife interviewed on whether or not she shops at the hypermarket and if she does, whether she shops there regularly or occasionally. Mapping the responses of the 144 housewives interviewed in the survey he draws the map shown in Figure 1. In this form the map is rather complex in appearance. There is some evidence of systematic spatial variation in the responses but the picture is by no means clear. By using the probability surface method, however, he is able to sift out the underlying systematic spatial variation in responses. He finds that the appropriate probability surfaces to fit are those shown in Figures 2, 3 and 4. These are, respectively, the probability surfaces of regularly shopping at the hypermarket, occasionally shopping at the hypermarket and never shopping at the hypermarket. (The reader should note that these surface maps were produced automatically by the computer and the hand drawn contours were added to aid interpretation, using the key printed below each map).

Inspection of Figure 2 shows that the underlying regional structure of regularly shopping at the hypermarket is a 'dome' centred on the hypermarket. The probability of regularly shopping at the hypermarket falls away rapidly in all directions as one moves away from the hypermarket. In contrast, Figure 4 shows that the underlying regional structure of never shopping at the hypermarket is a flat-bottomed 'basin' centred on the hypermarket. The probability of never shopping at the hypermarket is low in the area surrounding the hypermarket but becomes high at the edges of the survey area. Finally, Figure 3 shows that the underlying regional structure of occasionally shopping at the hypermarket has a 'ring doughnut' type of structure, with the highest predicted probabilities 0.5 to 0.6 occurring in a broken ring or horseshoe some distance from the hypermarket. Immediately surrounding the hypermarket, the probability of occasionally shopping at the hypermarket falls to between 0.3 and 0.4, a level similar to that found in a ring some way from the hypermarket beyond the ring of higher probabilities.

Countless similar illustrations could have been provided. In the context of human geography for example, probability surfaces of aircraft noise annoyance around Manchester (Ringway) Airport have been described in Wrigley (1977), whilst in the context of physical geography and geology potential illustrations would include the use of probability surfaces of 'barren' or 'producing' oil wells in oil exploration, or probability surfaces of 'presence' or 'absence' of particular components in regional geochemical analyses.
Fig. 2 2nd order probability surface of regularly shopping at the hypermarket

Fig. 3 2nd order probability surface of occasionally shopping at the hypermarket
II THE TREND SURFACE MODEL AND THE SIMPLEST PROBABILITY SURFACE MODELS

(i) The form of the trend surface model

To understand probability surface models it is necessary to understand how they differ from traditional trend surface models. To help clarify these differences we will first briefly summarise the major features of trend surface models.

The traditional trend surface model can be written for each of a series of \(i \) localities \((i=1,...,N)\) as

\[
Z_i = f(U_i, V_i) + \epsilon_i
\]

where \(Z_i \) is the response variable or variable to be mapped; a metrically (interval or ratio) scaled random variable, and \(U_i \) and \(V_i \) are the geographical co-ordinates of locality \(i \). The trend surface model assumes that \(Z_i \) is composed of two components, a 'trend' or 'regional' component \(f(U_i, V_i) \) and a 'local' component \(\epsilon_i \). In geographical research the most widely used form of the function \(f(U_i, V_i) \) is the polynomial power series expansion which has the general form

\[
f(U_i, V_i) = \alpha + \beta_1 U_i + \beta_2 V_i + \beta_3 U_i^2 + \beta_4 U_i V_i + \beta_5 V_i^2 + ... \]

but other functional forms such as the double Fourier series (Bassett, 1972; Unwin, 1975a; Whitten, 1975) have also been used.

In the polynomial case, trend surface models of increasing complexity can be specified by including more and more terms in the power series expansion on the right hand side of equation (2). The more complex the trend surface model, the higher the so called 'order' of the trend or regional component of \(Z_i \). The simplest polynomial trend surface model is of 1st order and has the form

\[
Z_i = \alpha + \beta_1 U_i + \beta_2 V_i + \epsilon_i
\]

The next most complex model is of 2nd order and has the form

\[
Z_i = \alpha + \beta_1 U_i + \beta_2 V_i + \beta_3 U_i^2 + \beta_4 U_i V_i + \beta_5 V_i^2 + \epsilon_i
\]

Three additional terms have been added to the 1st order model, and it can be seen that these new terms include squares or second powers of the coordinates. Higher order models follow the same pattern, the highest power included in the expansion at any point denotes the order of the trend surface model. For example a third order trend surface model has the form

\[
Z_i = \alpha + \beta_1 U_i + \beta_2 V_i + \beta_3 U_i^2 + \beta_4 U_i V_i + \beta_5 V_i^2 + \beta_6 U_i^3 + \beta_7 U_i^2 V_i + \beta_8 U_i V_i^2 + \beta_9 V_i^3 + \epsilon_i
\]

In most of the following discussion, rather than distinguish a particular order of model, it will be useful to refer to polynomial trend surface models as a class. For this purpose we will use the general form of the expansion given in equation (2).
The trend surface model, equation (1), describes a stochastic dependence relationship between U_i, V_i and Z_i. The error term or stochastic disturbance e_i is random and therefore for every pair of values U_i, V_i, there exists a whole probability distribution of possible values of Z_i.

The trend surface model is therefore essentially a multiple regression model, and, furthermore, because the forms of the function $f(U_i, V_i)$ used are normally linear in the unknown parameters (i.e. equation (2) is linear in the unknown parameters a, b_1, b_2, ...), the trend surface model is normally a multiple linear regression model. As a result, a full specification of the trend surface model must consist of the same assumptions as an equivalent multiple linear regression model (see Ferguson, 1977). In the case of most geographical applications, this means that the specification of the trend surface model must embody the same assumptions as in what is termed the classical normal multiple linear regression model. These assumptions are as follows.

(A1) The linearity assumption. The regression equation should be linear in the unknown parameters. For example, whereas equation (4) is nonlinear in the variables, it is linear in the parameters and thus is an in-trinsically linear model.

(A2) The assumption that the values of the explanatory variables in the regression model can be measured without error.

(A3) The assumption that the values of the explanatory variables are fixed or nonstochastic. (This assumption can easily be relaxed.)

(A4) The assumption that no exact linear relationship exists between two or more of the explanatory variables. This is known as the no multicollinearity assumption.

(A5) The assumption that the number of observations exceeds the number of parameters to be estimated.

(A6) The zero error mean assumption. This is written $E(e_i) = 0$. (If $E(e_i)$ is known as the expectation or expected value of e_i, it is simply the mean of the probability distribution of possible values of e_i.)

(A7) The constant error variance or homoscedasticity assumption. This is written $V(e_i) = V$. (This standard in the case where i and j refer to geographical localities, this assumption is known as the spatially independent error terms or no spatial autocorrelation assumption.)

(A9) The assumption that e_i is normally distributed.

In the case of the trend surface model, assumptions (A3) and (A6) imply that if we take expectations of both sides of (1), it follows that

$$E(Z_i) = [f(U_i, V_i) + c_i]$$

(5)

(By assumption (A3), U_i and V_i are fixed values, thus $E(U_i) = U_i$ and $E(V_i) = V_i$. By assumption (A6) $E(c_i) = 0$.). In the case of the widely used polynomial form of the function $f(U_i, V_i)$, equation (6) can be written as

$$E(Z_i) = \alpha + b_1U_i + b_2V_i + b_3U_i^2 + b_4U_iV_i + b_5V_i^2$$

(7)

This relationship gives the mean value of Z_i associated with the pair of geographical co-ordinates U_i and V_i for each of the i possible localities in a particular area. Across the i localities it defines what might be termed the 'true' or population trend surface. The parameters of this equation $\alpha, b_1, b_2, ...$ are unknown; consequently we must estimate their values from the observed Z_i, U_i, V_i values of a sample of the possible localities in the area. When the a and b parameters are estimated in this way, we write them as \hat{a} and \hat{b}, and on the basis of these values (still using the polynomial form of the function) we define the equation

$$\hat{Z}_i = \hat{a} + \hat{b}_1U_i + \hat{b}_2V_i + \hat{b}_3U_i^2 + \hat{b}_4U_iV_i + \hat{b}_5V_i^2$$

(8)

This gives \hat{Z}_i, the predicted or fitted value of the trend or regional component at locality i, which serves as a sample estimate of the 'true' or population trend component at locality i. Across the i localities equation (8) defines what might be termed the sample trend surface.

In practice few of the observed values of Z_i will lie exactly on the sample trend surface, most will lie either above or below it, and so the values of Z_i and \hat{Z}_i will differ. This difference is called a residual and is denoted e_i.

$$Z_i - \hat{Z}_i = Z_i - (\hat{a} + \hat{b}_1U_i + \hat{b}_2V_i + \hat{b}_3U_i^2 + \hat{b}_4U_iV_i + \hat{b}_5V_i^2)$$

(9)

In general, because $\alpha, \beta_1, \beta_2, ...$ are likely to differ from the true values of $a, b_1, b_2, ...$, the residual e_i is different from the stochastic disturbance or error component term e_i, for e_i is given by the relationship

$$Z_i - E(Z_i) = Z_i - (\alpha + b_1U_i + b_2V_i + b_3U_i^2 + b_4U_iV_i + b_5V_i^2)$$

(10)

e_i is a population term and cannot be observed. The value of the residual e_i can thus be regarded as a sample estimate of e_i.

The method normally used by geographers to estimate the parameters of a trend surface model is the method of least squares. (See for example Unwin, 1975a, p. 11-16, 19-21.) Under the assumptions (A1) to (A9) outlined above, the so-called ordinary least squares (O.L.S.) estimators \hat{a}, \hat{b}_1, \hat{b}_2, ... can be shown to be what are termed the best linear unbiased estimators (BLUE). Best linear unbiased estimators have a number of properties which intuitively we would like to have for an estimator to possess. (See the discussion by Kmenta, 1971, p. 154-93; Huang, 1970, p. 26-32; Wonnacott and Wonnacott, 1970, p. 40-47). They are unbiased; in other words each estimator has a sampling distribution with a mean equal to the parameter to be estimated. Each estimator also has a variance which is smaller than that of any other unbiased estimator (best linear unbiasedness).

(11) The simplest kind of probability surface model.

Having summarised the major features of trend surface models we are now in a position to consider what happens if the response variable or dependent variable is to be mapped, Z_i, is not a metrically (interval or ratio) scaled random variable as it is assumed to be in traditional trend surface models, but is instead a categorized (nominal or ordinal scaled) variable.
The simplest case we can encounter of such a categorized response variable is a random variable with only two possible outcomes. For example, returning to the hypermarket trade area mapping illustration given earlier, the survey conducted might simply ask housewives to indicate whether they shop at the hypermarket or not, that is to say, to give a yes/no response. If we then code these two possible responses 1 and 0, 1 representing the response 'yes I shop at the hypermarket' and 0 representing the response 'no I do not shop at the hypermarket', and try to use such a response variable in the traditional trend surface model we will encounter three problems.

(i) The first problem we will encounter concerns the predicted values which are generated if we use the traditional trend surface model (1).

Since \(z_i \) in this case can only assume two different values, 1 and 0, \(E(z_i) \), the expected value of \(z_i \) is a simple weighted average of the two possible values of \(z_i \) with weights given by the respective probabilities of occurrence of the possible values. Purely arbitrarily we will say that the probability that \(z_i=1 \) is \(P_i \) and that the probability that \(z_i=0 \) is \(1-P_i \). The expected value of \(z_i \) is then

\[
E(z_i) = (1\times P_i) + (0\times (1-P_i)) = P_i
\] (11)

Using the result we found in equation (6) we then have

\[
P_i = E(z_i) = f(u_i, v_i)
\] (12)

In other words, it is useful and reasonable to interpret the expectation of \(z_i \) given the co-ordinates of locality \(u_i \) and \(v_i \), as the probability of giving the specified response 'yes I shop at the hypermarket' at locality \(i \). The problem with this interpretation however concerns the predicted values \(z_i \) generated using the traditional trend surface model (1). Using the polynomial form of the function, \(z_i \) equals

\[
z_i = -\alpha + \beta_1 u_i + \beta_2 v_i + \beta_3 u_i^2 + \beta_4 v_i^2 + \beta_5 u_i v_i + \beta_6 u_i^3 + \beta_7 v_i^3 + \beta_8 u_i^2 v_i + \beta_9 v_i^2 \ldots
\] (13)

In view of the probability interpretation of \(E(z_i) \), these predicted values are interpreted as predicted probabilities, i.e. \(z_i = P_i \). However, whereas probability is defined to lie between 0 and 1, the predictions (13) generated using the traditional trend surface model are unbounded and may take values from \(-\infty \) to \(+\infty \). Consequently the predictions may lie outside the meaningful range of probability and thus be inconsistent with the probability interpretation advanced.

(ii) The second problem we will encounter concerns the violation of the constant error variance assumption (A7). This follows from the fact that the error term

\[
e_i = z_i - f(u_i, v_i)
\] (14)

can in this case only have one of two possible values

\[
e_i = \begin{cases} 1 - f(u_i, v_i) & \text{if } z_i = 1 \\ -f(u_i, v_i) & \text{if } z_i = 0 \end{cases}
\] (15)

These two possible values of \(e_i \) must occur with probabilities \(P_i \) and \(1-P_i \) respectively. Thus the assumption (A6) \(E(\epsilon_i|\omega) = 0 \) implies

\[
E(e_i) = P_i(1-f(u_i, v_i)) + (1-P_i)(-f(u_i, v_i)) = 0
\] (6)

Solving for \(P_i \) from (12) directly, we have that

\[
P_i = f(u_i, v_i)
\] (7)

\[
1-P_i = 1 - f(u_i, v_i)
\] (8)

The error variance can therefore be written

\[
E(e_i^2) = P_i(1-f(u_i, v_i))^2 + (1-P_i)(-f(u_i, v_i))^2
\]

or using (17)

\[
E(e_i^2) = P_i(1-P_i)^2 + (1-P_i)(1-P_i)^2
\] (16)

Clearly the error variance is not a constant. Localities where \(P_i \) is close to 0 or close to 1 will have relatively low variances while localities where \(P_i \) is close to 0.5 will have higher variances. When the constant error variance assumption is violated the problem of heteroscedasticity is said to be present. Heteroscedasticity does not result in biased parameter estimates, but it does result in a loss of efficiency. In addition, heteroscedasticity implies that the estimated variances of the estimated parameters will be biased estimators of the true variances of the estimated parameters. If these biased estimators are used, then the statistical tests commonly used in trend surface mapping will be incorrect.

(iii) The third problem we will encounter, and an additional reason for not using the statistical tests employed in trend surface mapping is that in the categorized response variable case the error distribution is not normal. Assumption (A9) therefore does not hold and the commonly used statistical tests cannot be applied since the tests depend on the normality of the errors.

As a means of handling a simple categorized response variable the traditional trend surface model is thus seriously deficient. The probability surface models which we will now consider attempt to overcome these deficiencies.

We have seen that in the case of a simple categorized response variable with only two possible outcomes, the expected value of \(z_i \) can be interpreted as a probability. That is to say, in our example \(E(z_i) = P_i \) where \(P_i \) is the probability of giving the response 'yes I shop at the hypermarket'. In view of this probability interpretation, the predicted values \(z_i \) generated when the parameters of the trend surface model are estimated, are interpreted as predicted probabilities. In order to allow the probability interpretation it is necessary therefore that the condition

\[0 \leq \hat{P}_i \leq 1 \] (20)
is satisfied by the predicted values of the trend surface model. Unfortunately, as we have seen, this condition is not necessarily satisfied by the usual trend surface model for it produces predicted values which can range from $-\infty$ to $+\infty$. If we are to improve upon the traditional trend surface model as a means of handling categorized response variables we must therefore seek a model which produces predicted values which satisfy condition (20).

There are a number of potential models which do this, (see Wrigley, 1976, p.9-11; Domenich and McFadden, 1975, p.102-108; Pindyck and Rubinfeld, 1976, p.238-249) but perhaps the most convenient of them is based upon the logistic function.

\[
\frac{e^{f(U_1,V_1)}}{1+e^{f(U_1,V_1)}} = p_1 \tag{21}
\]

As the value of \(f(U_1,V_1)\) ranges from $-\infty$ to $+\infty$, \(p_1\) ranges in value from 0 to 1. As an alternative this model can be rewritten as follows to produce a linear model

\[
1 + e^{f(U_1,V_1)} = \frac{e^{f(U_1,V_1)}}{p_1} = \frac{e^{f(U_1,V_1)}}{e^{f(U_1,V_1)}} = \frac{1}{p_1} = e^{f(U_1,V_1)}
\]

\[
p_1 = \frac{e^{f(U_1,V_1)}}{1+e^{f(U_1,V_1)}}
\]

\[
p_1 = \frac{e^{f(U_1,V_1)}}{1+e^{f(U_1,V_1)}}
\]

Then remembering that by the definition of a logarithm if \(y=e^x\), \(\log_e y = x\), we have

\[
\log_p \left(\frac{e^{f(U_1,V_1)}}{1-p_1} \right) = f(U_1,V_1) \tag{22}
\]

The left hand side of this model is a transformation of \(p_1\) known as the logit transformation and we can abbreviate it as \(L_1\). The important point to note about this transformation is that it increases from $-\infty$ to $+\infty$ as \(p_1\) increases from 0 to 1. What this means is that the predicted logit values \(L_1\) derived when the parameters of the model are estimated (using in this case the polynomial form of the function as an example)

\[
L_1 = \log_p \left(\frac{e^{f(U_1,V_1)}}{1-p_1} \right) = a + \beta_1 U_1 + \beta_2 V_1 + \beta_3 U_1^2 + \beta_4 U_1 V_1 + \beta_5 V_1^2 \ldots \tag{23}
\]

can take any values in the range $-\infty$ to $+\infty$, but the predicted probabilities which can be found by substituting \(a, \beta_1, \beta_2 \ldots\) into equation (21) remain confined within the range 0 to 1.

We call the linear model (22) the linear logit probability surface model or simply the linear probability surface model. The nonlinear model (21) from which it was derived can therefore be termed the nonlinear probability surface model. Both satisfy the predicted probabilities condition (20) and both represent feasible alternatives to the traditional trend surface model for the categorized response variable case.

In the case of our example, \(p_1\) represents the probability of giving the response 'yes I shop at the hypermarket' at locality \(i\). \(1-p_1\) therefore represents the probability of giving the response no I do not shop at the hypermarket' at locality \(i\), and the equivalent nonlinear model for this case is

\[
1-p_1 = \frac{1}{1+e^{f(U_1,V_1)}} \tag{24}
\]

It should be clear therefore that for the simplest categorized response variable, a dichotomous variable, one with only two possible outcomes, two probability surfaces can be mapped on the basis of models (21) and (24).

In the case of our example, these two surfaces are the probability surface of shopping at the hypermarket, and the probability surface of not shopping at the hypermarket. It should also be clear that the probabilities of giving the two possible responses sum to one at each locality. This means that in the two response category situation the nonlinear probability surface model is actually a set of two linked models (21) and (24); the models being linked by the fact that response probabilities must sum to one at each locality.

(iii) Estimating the parameters of the simplest probability surface models

Having found models which are more suited to the categorized response variable situation, how do we then estimate the parameters of these models? There are in fact two ways of doing this, a weighted least squares procedure and a direct maximum likelihood procedure.

In the case of the linear probability surface model we can use a least squares estimation method. Least squares is a method of estimation familiar to most geographers and the so called ordinary least squares (O.L.S.) method is the estimation procedure normally adopted for the traditional trend surface model. In the case of the linear probability surface model however, because the assumption (A7) of constant error variance is violated, the least squares method which must be employed is that known as weighted least squares (W.L.S.). The method is discussed in the context of linear logit models in Wrigley (1976, p.12-18).

As an alternative to weighted least squares we can use a direct maximum likelihood procedure. This procedure uses the probability expressions (21) and (24) directly and thus it can be thought of as a method of estimating the parameters of the nonlinear probability surface model without first having to convert the model into the linear form (22).
In trend surface mapping, for any surface of order \(N + 1 \), two distinct hypotheses can be tested:

(a) A null hypothesis of no significant increase in the residual sum of squares, or decrease in the regression sum of squares, between a trend surface of order \(N \) and a surface of order \(N + 1 \). This is a test of the improvement, if any, in the ability of a more complex trend surface of order \(N + 1 \) to capture the underlying regional structure compared with a less complex surface of order \(N \).

(b) A null hypothesis of no significant reduction in residual sum of squares, or increase in regression sum of squares, between a trend surface of order \(N + 1 \) and a surface of order \(N \). This is a test of the significance of the increase in the residual sum of squares, or decrease in the regression sum of squares, between a trend surface of order \(N + 1 \) and a surface of order \(N \). These parameters must then be estimated by taking as estimates the values which maximize the overall value of this likelihood equation. In practice, rather than maximize the likelihood itself, it is usual to maximize instead the log likelihood of the likelihood. In the case of (26) this implies maximizing

\[
\log L = \sum_{i=1}^{N} \log f(U_i, V_i) - \sum_{i=1}^{N} \log \{1 + e^{-f(U_i, V_i)}\}
\]

The maximum can be found by partially differentiating equation (27) with respect to its parameters and setting the partial derivatives equal to zero. The solution of the resulting set of equations yields the maximum likelihood parameter estimates. Provided no exact linear relationship exists between two or more of the explanatory variables, in other words, provided the data are not perfectly multicollinear, then the existence of a unique maximum is virtually certain in empirical samples of more than ten or twenty observations (Domencich and McFadden, 1975, p.111).

In practical terms the user of probability surface mapping need only know that the maximum likelihood estimation method employed has the logic described above. The computer routine described in Appendix 1(a) performs the estimation automatically.

(iii) Testing probability surfaces of progressively higher order

When discussing the widely used polynomial trend surface model (see II (i)) we noted that trend surface models of increasing complexity were denoted by the so called 'order' of the trend component they specified. A considerable amount of discussion in traditional polynomial trend surface mapping centres on statistical tests to determine what is the appropriate order of trend surface to fit; in other words what order of trend surface captures the underlying regional structure of the original spatial series (see Unwin, 1975a, p.21-24). Now that the form of the simplest probability surface models and methods of parameter estimation have been discussed we must therefore consider the question of what is the appropriate order of probability surface to fit.

In trend surface mapping, for any surface of order \(N + 1 \), two distinct hypotheses can be tested:

(a) A null hypothesis of no trend. That is, to say, we test whether all parameters associated with the explanatory variables \(U_i, V_i \), etc. (note that this does not include the a parameter associated with the constant term) in the trend surface of order \(N + 1 \) equal zero. This is a test of the significance of the trend surface in isolation from other factors.

(b) A null hypothesis of no significant reduction in residual sum of squares, or increase in residual sum of squares, between a trend surface of order \(N + 1 \) and a surface of order \(N \). This is a test of the improvement, if any, in the ability of a more complex trend surface of order \(N + 1 \) to capture the underlying regional structure compared with a less complex surface of order \(N \).

As specified the likelihood depends upon a set of unknown parameters (e.g., in the case of the polynomial \(f(U_i, V_i) = \alpha + \beta U_i + \gamma V_i + \delta U_i^2 + V_i^2 + \epsilon U_i V_i + \beta X_i \), . . .). These parameters must then be estimated by taking as estimates the values which maximize the overall value of this likelihood equation. In practice, rather than maximize the likelihood itself, it is usual to maximize instead the log likelihood of the likelihood. In the case of (26) this implies maximizing

\[
\log L = \sum_{i=1}^{N} \log f(U_i, V_i) - \sum_{i=1}^{N} \log \{1 + e^{-f(U_i, V_i)}\}
\]

The maximum can be found by partially differentiating equation (27) with respect to its parameters and setting the partial derivatives equal to zero. The solution of the resulting set of equations yields the maximum likelihood parameter estimates. Provided no exact linear relationship exists between two or more of the explanatory variables, in other words, provided the data are not perfectly multicollinear, then the existence of a unique maximum is virtually certain in empirical samples of more than ten or twenty observations (Domencich and McFadden, 1975, p.111).

In practical terms the user of probability surface mapping need only know that the maximum likelihood estimation method employed has the logic described above. The computer routine described in Appendix 1(a) performs the estimation automatically.

(iv) Testing probability surfaces of progressively higher order

When discussing the widely used polynomial trend surface model (see II (i)) we noted that trend surface models of increasing complexity were denoted by the so called 'order' of the trend component they specified. A considerable amount of discussion in traditional polynomial trend surface mapping centres on statistical tests to determine what is the appropriate order of trend surface to fit; in other words what order of trend surface captures the underlying regional structure of the original spatial series (see Unwin, 1975a, p.21-24). Now that the form of the simplest probability surface models and methods of parameter estimation have been discussed we must therefore consider the question of what is the appropriate order of probability surface to fit.
In the case of probability surface mapping, the same type of tests can be conducted, but instead of using residual or regression sums of squares and the F ratio, we now must use inferential tests based upon the maximized log likelihood value for different orders of probability surface. The test statistic we use (see Cox, 1970, p.88) is

$$\log \Lambda = \log \Lambda^\text{*}$$ \hspace{1cm} (28)

$\log \Lambda$ is the maximized log likelihood of a set of unrestricted probability surface models, whereas $\log \Lambda^\text{*}$ is the maximized log likelihood of a set of restricted probability surface models embodying q constraints on the parameters of the set of unrestricted models. This test statistic is distributed asymptotically as one half chi-squared with g degrees of freedom.

Using this statistic, hypotheses equivalent to those in trend surface mapping, (a) and (b) above, can be tested.

(a) A null hypothesis of no trend, that is to say a test of whether all parameters associated with the explanatory variables v_1, v_2, \ldots, v_q in the set of linked probability surface models of order N, are equal zero. In this case $\log \Lambda$ is the maximized log likelihood for the set of linked probability surface models of order N, and $\log \Lambda^\text{*}$ is the maximized log likelihood for the set of linked probability surface models of order zero (in other words for the set of probability surface models containing only intercept/constant terms). For convenience we can write this as $\log \Lambda^\text{*}(C)$.

(b) A null hypothesis of no significant improvement in the ability of a linked set of more complex probability surface models of order N+1 to capture the underlying regional structure compared with a linked set of less complex probability surface models of order N. In this case $\log \Lambda$ is the maximized log likelihood for the set of probability surface models of order N+1, and $\log \Lambda^\text{*}$ is the maximized log likelihood for the set of probability surface models of order N.

In trend surface mapping, when determining the appropriate order of trend surface to fit it is wise to use in addition to the F ratio tests of hypotheses (a) and (b) described above, tests of the amount of systematic spatial variation in the maps of residuals from surfaces of different orders. In recent years the ability to test residual maps for systematic spatial variation in this way has been significantly improved by the development of a spatial autocorrelation statistic for use with regression residuals by Cliff and Ord (1972) (see Cliff and Ord, 1973, p.122-127 for a trend surface mapping example).

In probability surface mapping, similar residual map tests would be a useful addition to the tests described in (a) and (b) above. To this end we first need therefore a definition of a residual. In the simple two response category case a residual can be defined as

$$Z_i = P_i - e_i$$ \hspace{1cm} (29)

Cox (1970, p.96) has suggested standardising such residuals to have a mean of zero and a unit variance as follows

$$Z_i = \frac{P_i - e_i}{P_i(1-P_i)}$$ \hspace{1cm} (30)

Although this residual has useful properties, because Z_i can only take the value 0 or 1 its distribution like that of (29) will typically be highly non-normal. In particular, residuals close to the value zero will not occur except for extreme values of P_i. In these locations where there is a high or low probability of the first response category being selected (or in terms of the example discussed above, of shopping at the hypermarket) the residuals have a skewed distribution. Thus in locations where the probability of selecting the first response category is high, the residuals are either small and negative or large and positive.

In attempts to extend the spatial autocorrelation statistic to the case of residuals (29-30) from probability surface maps, we are hampered not only by the extreme non-normality of the residuals but also by the fact that the Cliff-Ord spatial autocorrelation statistic for regression residuals is not applicable to residuals derived from a nonlinear model. A form of generalisation of the Cliff-Ord regression residuals statistic is required. In the absence of such a statistic we might perhaps attempt purely visual or ad hoc statistical assessment of the presence of spatial autocorrelation amongst our mapped residuals, or employ in an informal manner Cliff and Ord's (1969) earlier spatial autocorrelation statistic for spatially distributed variables using the version of the test based upon the assumption of randomisation rather than that based upon the assumption of normality. These suggestions are however only tentative and much work remains to be done in this area.

(v) Goodness-of-fit statistics

In traditional trend surface mapping, so called 'goodness-of-fit' statistics are widely used to answer the question, how closely does a trend surface fit the original observations? (see Unwin, 1975a, p.14; Whitten, 1975, p.59-291). These statistics are based upon the R^2 value, the squared multiple correlation coefficient, and they range in value from either 0 to 1, or from 0% to 100%.

In probability surface mapping a goodness-of-fit statistic is available which fulfills the same purpose, but in this case it is based upon the likelihood ratio index (see Tardiff, 1976 and Domencich and McFadden, 1975, p.123). It has the form

$$\chi^2 = 1 - \frac{\log \Lambda^\text{*}}{\log \Lambda^\text{*}(C)}$$ \hspace{1cm} (31)

As noted in II (v), $\log \Lambda^\text{*}(C)$ is the maximized log likelihood for the set of linked probability surface models containing only intercept/constant terms (i.e. for the set of probability surface models of order zero), $\log \Lambda$ is the maximized log likelihood for the set of linked probability surface models which generate the probability surfaces whose goodness-of-fit is to be assessed. Like goodness-of-fit statistics in traditional trend surface mapping its value ranges from 0 to 1, or from 0% to 100% if multiplied by 100.
The reader should note however, that (31) is not the only goodness-of-fit statistic based upon the likelihood ratio which has been suggested. The economist John Cragg has suggested and used (see for example Baxter and Cragg, 1970, p.230) a 'pseudo' R^2 value which is defined as

$$p^2 = \frac{1 - e^{-(\ell(\hat{\beta}) - \ell_{min})/N}}{1 - e^{-(\ell_{max} - \ell_{min})/N}}$$

(32)

The definition of its components is the same as in (31) with the addition of N which is the total number of observations in the sample. This statistic also ranges in value from 0 to 1 but it gives results which differ from those produced by (31). Clearly therefore the question of what constitutes an appropriate goodness-of-fit statistic is not yet fully resolved.

(vi) An empirical example

Now that we have discussed the form of the simplest probability surface models, methods of parameter estimation, and how to conduct inferential tests, we will work through an actual example of probability surface mapping. As in the discussion above, we will consider the case of a marketing geographer who wishes to investigate the trade area characteristics of a recently opened hypermarket. To assess the extent of the trade area and the level of market penetration within it he conducts a household survey of the shopping habits of 108 housewives in the area surrounding the hypermarket. Amongst other questions in the survey he asks each housewife whether she shops at the hypermarket or not. This information can either be portrayed in map form, as in Figure 5, or in tabular form, as in Table 1. Notice that in Table 1 the home of each housewife has been given a four figure map reference.

Given this survey data, the marketing geographer then wishes to fit probability surfaces of a polynomial type. To achieve this he uses the program supplied in Appendix 1(a). This program allows the user to fit, in a sequential manner, polynomial probability surfaces from order 1 up to order 4. For each surface order the program produces: probability surface maps for both the possible responses, i.e. the probability surface of shopping at the hypermarket and the probability surface of not shopping at the hypermarket; the maximized log likelihood; parameter estimates; standard errors; the variance-covariance matrix of the parameter estimates; predicted probabilities of giving each response for each of the sample respondents; raw residuals (see equation 29) and standardised residuals (see equation 30). Prior to this, the maximized log likelihood for the set of probability surface models containing only an intercept term is printed. This provides the $\log e^{\ell(\hat{\beta})/N}$ value required in the tests described in II (iv) and the goodness-of-fit statistics described in II (v). By using this program to fit probability surfaces up to order 3 he achieves the results shown in Table 2 and Figures 6, 7 and 8.

Table 2 gives the maximized log likelihoods for probability surface models of orders 0 to 3; the differences between these maximized log likelihoods; the differences expected under the null hypothesis (H_0) of no significant improvement between surface models of different orders (see II (iv) hypothesis b^*), and the decision on the null hypothesis at conventional

![Fig. 5 Map plot of responses to shopping survey](image)
Table 1

<table>
<thead>
<tr>
<th>Respondent</th>
<th>U</th>
<th>V</th>
<th>Shopping at hypermarket</th>
<th>Respondent</th>
<th>U</th>
<th>V</th>
<th>Shopping at hypermarket</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.8</td>
<td>-2.8</td>
<td>N</td>
<td>55</td>
<td>-2.9</td>
<td>0.2</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>-2.6</td>
<td>-2.3</td>
<td>N</td>
<td>56</td>
<td>-2.6</td>
<td>0.8</td>
<td>N</td>
</tr>
<tr>
<td>3</td>
<td>-2.2</td>
<td>-2.8</td>
<td>N</td>
<td>57</td>
<td>-2.2</td>
<td>0.4</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>-1.8</td>
<td>-2.6</td>
<td>Y</td>
<td>58</td>
<td>-1.7</td>
<td>0.7</td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>-1.6</td>
<td>-2.8</td>
<td>N</td>
<td>59</td>
<td>-1.6</td>
<td>0.2</td>
<td>Y</td>
</tr>
<tr>
<td>6</td>
<td>-1.4</td>
<td>-2.1</td>
<td>N</td>
<td>60</td>
<td>-1.3</td>
<td>0.5</td>
<td>N</td>
</tr>
<tr>
<td>7</td>
<td>-0.7</td>
<td>-2.2</td>
<td>Y</td>
<td>61</td>
<td>-0.8</td>
<td>0.4</td>
<td>Y</td>
</tr>
<tr>
<td>8</td>
<td>-0.5</td>
<td>-2.6</td>
<td>N</td>
<td>62</td>
<td>-0.6</td>
<td>0.6</td>
<td>Y</td>
</tr>
<tr>
<td>9</td>
<td>-0.2</td>
<td>-2.3</td>
<td>N</td>
<td>63</td>
<td>-0.2</td>
<td>0.6</td>
<td>N</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>-2.6</td>
<td>Y</td>
<td>64</td>
<td>0.2</td>
<td>0.2</td>
<td>Y</td>
</tr>
<tr>
<td>11</td>
<td>0.6</td>
<td>-2.8</td>
<td>N</td>
<td>65</td>
<td>0.6</td>
<td>0.8</td>
<td>N</td>
</tr>
<tr>
<td>12</td>
<td>0.9</td>
<td>-2.6</td>
<td>N</td>
<td>66</td>
<td>0.8</td>
<td>0.2</td>
<td>N</td>
</tr>
<tr>
<td>13</td>
<td>1.2</td>
<td>-2.3</td>
<td>Y</td>
<td>67</td>
<td>1.2</td>
<td>0.7</td>
<td>N</td>
</tr>
<tr>
<td>14</td>
<td>1.4</td>
<td>-2.9</td>
<td>N</td>
<td>68</td>
<td>1.5</td>
<td>0.4</td>
<td>Y</td>
</tr>
<tr>
<td>15</td>
<td>1.7</td>
<td>-2.1</td>
<td>N</td>
<td>69</td>
<td>1.8</td>
<td>0.1</td>
<td>Y</td>
</tr>
<tr>
<td>16</td>
<td>2.2</td>
<td>-2.6</td>
<td>Y</td>
<td>70</td>
<td>2.3</td>
<td>0.6</td>
<td>Y</td>
</tr>
<tr>
<td>17</td>
<td>2.5</td>
<td>-2.8</td>
<td>N</td>
<td>71</td>
<td>2.5</td>
<td>0.2</td>
<td>N</td>
</tr>
<tr>
<td>18</td>
<td>2.7</td>
<td>-2.4</td>
<td>N</td>
<td>72</td>
<td>2.7</td>
<td>0.8</td>
<td>N</td>
</tr>
<tr>
<td>19</td>
<td>2.9</td>
<td>-1.1</td>
<td>N</td>
<td>73</td>
<td>2.9</td>
<td>1.9</td>
<td>N</td>
</tr>
<tr>
<td>20</td>
<td>2.6</td>
<td>-1.5</td>
<td>N</td>
<td>74</td>
<td>2.7</td>
<td>1.3</td>
<td>N</td>
</tr>
<tr>
<td>21</td>
<td>2.1</td>
<td>-1.3</td>
<td>N</td>
<td>75</td>
<td>2.2</td>
<td>1.4</td>
<td>Y</td>
</tr>
<tr>
<td>22</td>
<td>1.7</td>
<td>-1.6</td>
<td>Y</td>
<td>76</td>
<td>1.9</td>
<td>1.5</td>
<td>N</td>
</tr>
<tr>
<td>23</td>
<td>-1.4</td>
<td>-1.2</td>
<td>N</td>
<td>77</td>
<td>-1.4</td>
<td>1.8</td>
<td>N</td>
</tr>
<tr>
<td>24</td>
<td>-1.1</td>
<td>-1.7</td>
<td>N</td>
<td>78</td>
<td>-1.2</td>
<td>1.1</td>
<td>Y</td>
</tr>
<tr>
<td>25</td>
<td>-0.8</td>
<td>-1.5</td>
<td>N</td>
<td>79</td>
<td>-0.7</td>
<td>1.4</td>
<td>N</td>
</tr>
<tr>
<td>26</td>
<td>-0.4</td>
<td>-1.6</td>
<td>Y</td>
<td>80</td>
<td>-0.3</td>
<td>1.6</td>
<td>Y</td>
</tr>
<tr>
<td>27</td>
<td>-0.2</td>
<td>-1.1</td>
<td>N</td>
<td>81</td>
<td>0.0</td>
<td>1.5</td>
<td>N</td>
</tr>
<tr>
<td>28</td>
<td>0.3</td>
<td>-1.2</td>
<td>N</td>
<td>82</td>
<td>0.3</td>
<td>1.3</td>
<td>Y</td>
</tr>
<tr>
<td>29</td>
<td>0.3</td>
<td>-1.8</td>
<td>N</td>
<td>83</td>
<td>0.4</td>
<td>1.8</td>
<td>N</td>
</tr>
<tr>
<td>30</td>
<td>0.7</td>
<td>-1.2</td>
<td>N</td>
<td>84</td>
<td>0.9</td>
<td>1.6</td>
<td>Y</td>
</tr>
<tr>
<td>31</td>
<td>1.2</td>
<td>-1.2</td>
<td>Y</td>
<td>85</td>
<td>1.3</td>
<td>1.7</td>
<td>Y</td>
</tr>
<tr>
<td>32</td>
<td>1.3</td>
<td>-1.8</td>
<td>N</td>
<td>86</td>
<td>1.6</td>
<td>1.9</td>
<td>N</td>
</tr>
<tr>
<td>33</td>
<td>1.5</td>
<td>-1.5</td>
<td>N</td>
<td>87</td>
<td>1.6</td>
<td>1.2</td>
<td>Y</td>
</tr>
<tr>
<td>34</td>
<td>2.3</td>
<td>-1.9</td>
<td>N</td>
<td>88</td>
<td>2.2</td>
<td>1.7</td>
<td>Y</td>
</tr>
<tr>
<td>35</td>
<td>2.5</td>
<td>-1.2</td>
<td>N</td>
<td>89</td>
<td>2.4</td>
<td>1.3</td>
<td>N</td>
</tr>
<tr>
<td>36</td>
<td>2.9</td>
<td>-1.7</td>
<td>N</td>
<td>90</td>
<td>2.8</td>
<td>1.9</td>
<td>N</td>
</tr>
<tr>
<td>37</td>
<td>-2.8</td>
<td>-0.4</td>
<td>N</td>
<td>91</td>
<td>2.2</td>
<td>1.2</td>
<td>N</td>
</tr>
<tr>
<td>38</td>
<td>-2.3</td>
<td>-0.9</td>
<td>Y</td>
<td>92</td>
<td>-2.8</td>
<td>2.8</td>
<td>N</td>
</tr>
<tr>
<td>39</td>
<td>-2.2</td>
<td>-0.2</td>
<td>N</td>
<td>93</td>
<td>-2.2</td>
<td>2.7</td>
<td>N</td>
</tr>
<tr>
<td>40</td>
<td>-1.7</td>
<td>-0.7</td>
<td>Y</td>
<td>94</td>
<td>-2.1</td>
<td>2.6</td>
<td>N</td>
</tr>
<tr>
<td>41</td>
<td>-1.6</td>
<td>-0.2</td>
<td>N</td>
<td>95</td>
<td>-1.9</td>
<td>2.9</td>
<td>N</td>
</tr>
<tr>
<td>42</td>
<td>-1.4</td>
<td>-0.4</td>
<td>N</td>
<td>96</td>
<td>-1.1</td>
<td>2.5</td>
<td>N</td>
</tr>
<tr>
<td>43</td>
<td>-0.8</td>
<td>-0.5</td>
<td>N</td>
<td>97</td>
<td>-0.6</td>
<td>2.0</td>
<td>Y</td>
</tr>
<tr>
<td>44</td>
<td>-0.6</td>
<td>-0.8</td>
<td>Y</td>
<td>98</td>
<td>-0.7</td>
<td>2.1</td>
<td>Y</td>
</tr>
<tr>
<td>45</td>
<td>-0.3</td>
<td>-0.5</td>
<td>N</td>
<td>99</td>
<td>-0.3</td>
<td>2.5</td>
<td>Y</td>
</tr>
<tr>
<td>46</td>
<td>0.7</td>
<td>-0.5</td>
<td>N</td>
<td>100</td>
<td>0.4</td>
<td>2.3</td>
<td>Y</td>
</tr>
<tr>
<td>47</td>
<td>0.5</td>
<td>-0.2</td>
<td>Y</td>
<td>101</td>
<td>0.5</td>
<td>2.9</td>
<td>N</td>
</tr>
<tr>
<td>48</td>
<td>0.6</td>
<td>-0.7</td>
<td>Y</td>
<td>102</td>
<td>0.9</td>
<td>2.6</td>
<td>Y</td>
</tr>
<tr>
<td>49</td>
<td>1.2</td>
<td>-0.3</td>
<td>N</td>
<td>103</td>
<td>1.3</td>
<td>2.8</td>
<td>N</td>
</tr>
<tr>
<td>50</td>
<td>1.5</td>
<td>-0.5</td>
<td>N</td>
<td>104</td>
<td>1.5</td>
<td>2.7</td>
<td>Y</td>
</tr>
<tr>
<td>51</td>
<td>1.8</td>
<td>-0.3</td>
<td>N</td>
<td>105</td>
<td>1.8</td>
<td>2.7</td>
<td>N</td>
</tr>
<tr>
<td>52</td>
<td>2.2</td>
<td>-0.7</td>
<td>Y</td>
<td>106</td>
<td>2.4</td>
<td>2.4</td>
<td>Y</td>
</tr>
<tr>
<td>53</td>
<td>2.2</td>
<td>-0.1</td>
<td>N</td>
<td>107</td>
<td>2.8</td>
<td>2.3</td>
<td>N</td>
</tr>
<tr>
<td>54</td>
<td>2.9</td>
<td>-0.6</td>
<td>N</td>
<td>108</td>
<td>2.8</td>
<td>2.9</td>
<td>N</td>
</tr>
</tbody>
</table>

Table 2.

<table>
<thead>
<tr>
<th>Order of surfaces</th>
<th>Observed Maximised log likelihood</th>
<th>Expected under H0</th>
<th>O.F.</th>
<th>Decision on H0</th>
<th>p^2</th>
<th>R^2_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-72.609</td>
<td>0.458</td>
<td>4.606</td>
<td>2.986</td>
<td>2</td>
<td>0.0083</td>
</tr>
<tr>
<td>1</td>
<td>-72.145</td>
<td>9.746</td>
<td>5.672</td>
<td>3.507</td>
<td>3</td>
<td>0.1406</td>
</tr>
<tr>
<td>2</td>
<td>-62.299</td>
<td>0.285</td>
<td>6.638</td>
<td>3.444</td>
<td>4</td>
<td>0.1445</td>
</tr>
</tbody>
</table>

significance levels. Also given are the values of the two goodness-of-fit statistics discussed in II (v).

Using test statistic (28) and the method explained in II (iv) hypothesis b*, the first time a step from surface order N to surface order N+1 is encountered that does not significantly improve your ability to capture the underlying regional structure, we should stop fitting surfaces of higher order and accept the probability surface models of order N. There is, however, a generally acknowledged exception to this rule in the trend surface context (see Whitten, 1975, p. 289) which also applies in the case of the example under consideration. The exception occurs where the underlying regional structure is a symmetrical 'dome' or 'basin'. In this case, first order surfaces will capture little of this underlying structure and the improvement over zero order surfaces will be insignificant. The second order surfaces, however, will capture a significant amount of this underlying regional structure, and it is clearly worthwhile extending the models to this higher order.

Table 2 shows clearly that it is the second order probability surfaces which are the appropriate surfaces to fit. The increased complexity (i.e. the increased number of parameters to be estimated) associated with moving from second order probability surface models to third order models is associated with only a minor improvement in the maximized log likelihood, and consequently there is no advantage to be gained.

The conclusions drawn using Table 2 are borne out in an examination of the probability surfaces themselves. Figures 6 (a) and (b), 7 (a) and (b), and 8 (a) and (b), show respectively the first, second and third order probability surfaces of shopping at the hypermarket and not shopping at the hypermarket. Clearly the third order surfaces add little to the picture of the underlying regional structure given in Figures 7 (a) and (b) by the second order surfaces. This underlying regional structure is a 'dome' centred on the hypermarket in the case of Figure 7 (a), the probability surface of shopping at the hypermarket, and a 'basin' centred on the
Fig. 6(a) 1st order probability surface of shopping at the hypermarket

Fig. 6(b) 1st order probability surface of not shopping at the hypermarket
Fig. 7(a) 2nd order probability surface of shopping at the hypermarket

Fig. 7(b) 2nd order probability surface of not shopping at the hypermarket
Fig. 8(a) 3rd order probability surface of shopping at the hypermarket

Fig. 8(b) 3rd order probability surface of not shopping at the hypermarket
Table 3
Part of the information printed by the probability surface mapping program for each surface order fitted

<table>
<thead>
<tr>
<th>MAXIMIZED LOG LIKELIHOOD VALUE</th>
<th>-62.39922</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARAMETER ESTIMATES</td>
<td>STANDARD ERRORS</td>
</tr>
<tr>
<td>0.3082349</td>
<td>0.3718736</td>
</tr>
<tr>
<td>0.0355195</td>
<td>0.145555</td>
</tr>
<tr>
<td>0.2817769</td>
<td>0.1409748</td>
</tr>
<tr>
<td>0.2615272</td>
<td>0.0976405</td>
</tr>
<tr>
<td>0.253272</td>
<td>0.0976405</td>
</tr>
<tr>
<td>0.0368524</td>
<td>0.0846062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIANCE-COVARIANCE MATRIX</th>
<th>OF PARAMETER ESTIMATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLUMN</td>
<td>1</td>
</tr>
<tr>
<td>ROW 1</td>
<td>0.13829</td>
</tr>
<tr>
<td>ROW 2</td>
<td>-0.80434</td>
</tr>
<tr>
<td>ROW 3</td>
<td>-0.88087</td>
</tr>
<tr>
<td>ROW 4</td>
<td>-0.88087</td>
</tr>
<tr>
<td>ROW 5</td>
<td>-8.818816</td>
</tr>
</tbody>
</table>

For each sample, predicted probabilities are calculated as follows:

\[P(Y_1=1, Y_2=1) = \frac{e^{f_{Y_1}(x)}}{2 \sum e^{f_{Y_1}(x)}} \]

where \(f_{Y_1}(x) \) is the nonlinear probability surface model generalised to the form

\[f_{Y_r}(x) = \sum e^{f_{Y_r}(x)} \]

such as the probability surface of not shopping at the hypermarket in the case of Figure 7 (b), the probability surface of not shopping at the hypermarket.

The probability surface maps shown in Figures 6, 7 and 8 are the line printer maps produced by the computer. Contours occur at the dividing line between symbols. As an exercise, the reader may wish to draw in these contours following the example of Figures 2, 3 and 4. A key is automatically printed below each map to aid interpretation. The small page size of this monograph makes this key difficult to read but the reader should remember that in practice the computer prints these maps and the key at a much larger size.

In addition to the inferential tests presented in Table 2, residuals from the probability surface maps should be mapped and an attempt made to assess the amount of systematic spatial variation in these maps (see II (iv)). As can be seen in Table 3 (which shows part of the information printed by the program for each surface order fitted) residuals are automatically printed by the program presented in Appendix 1(a) and construction of these residual maps will be left as an exercise for the reader.

III EXTENDING THE SIMPLEST PROBABILITY SURFACE MODELS

(i) The generalised probability surface model

The case we have examined so far, the case in which the categorized response variable has only two possible outcomes, is only the simplest probability surface problem. There are far more cases in which the geographer is faced with categorized response variables with more than two possible outcomes. We call these polychotomous rather than dichotomous variables. Probability surface models can, however, be readily extended to handle such cases. For example, in our hypermarket survey instead of housewives simply indicating whether they shop at the hypermarket or not, let us presume that they indicate whether they regularly shop at the hypermarket, occasionally shop at the hypermarket, or never shop at the hypermarket. In other words, let us return to the introductory illustration in : (ii). For this three response category case, the nonlinear probability surface model generalises to the form

\[P_{Y_r} = \frac{e^{f_{Y_r}(U, X)}}{2 \sum e^{f_{Y_r}(U, X)}} \]

such as the probability of the \(r \)th response being given by the housewife at locality \(x \), and the 3 responses 'regularly shop at the hypermarket', 'occasionally shop at the hypermarket' and 'never shop at the hypermarket' are arbitrarily coded 0,1 and 2. It should be stressed that there is no assumption of ordering in this coding.

In the polynomial case, equation (33) therefore can be written:
or substituting from equation (37)

\[f_{2}(U_{i}, V_{i}) = \frac{e^{a_{2} + B_{21} U_{i} + B_{22} V_{i}}}{\sum_{s=0}^{J-1} e^{a_{2} + B_{21} U_{i} + B_{22} V_{i}}} \quad r = 0, \ldots, J-1 \]

This extension of the nonlinear probability surface model to the three response category case, generalises to any number of categories. For example, with \(J \) possible response categories the model (33) simply takes the form

\[f_{r}(U_{i}, V_{i}) \quad r = 0, \ldots, J-1 \]

and this can be expanded out, just as (37) was expanded from (33), to show that it is actually a set of \(J \) linked models.

(ii) Estimating the parameters of the extended probability surface models

Maximum likelihood estimation of the parameters of the 3 response category model demands a simple expansion of the likelihood for the two response category case. Instead of (25) we now have

\[\Lambda = \prod_{i=1}^{N} \prod_{1 \leq j \leq N_{2} + 1} P_{ij} \]

or substituting from equation (37)

\[\Lambda = \prod_{i=1}^{N_{2}} f_{0}(U_{i}, V_{i}) \prod_{i=N_{2}+1}^{N} f_{1}(U_{i}, V_{i}) \]

\[\Lambda = \prod_{i=1}^{N_{2}} \frac{1}{\sum_{s=0}^{J-1} e^{a_{2} + B_{21} U_{i} + B_{22} V_{i}}} \prod_{i=N_{2}+1}^{N} \frac{1}{\sum_{s=0}^{J-1} e^{a_{2} + B_{21} U_{i} + B_{22} V_{i}}} \]

\[\Lambda = \prod_{i=1}^{N_{2}} f_{0}(U_{i}, V_{i}) \prod_{i=N_{2}+1}^{N} f_{1}(U_{i}, V_{i}) \]

\[\Lambda = \prod_{i=1}^{N_{2}} \frac{1}{\sum_{s=0}^{J-1} e^{a_{2} + B_{21} U_{i} + B_{22} V_{i}}} \prod_{i=N_{2}+1}^{N} \frac{1}{\sum_{s=0}^{J-1} e^{a_{2} + B_{21} U_{i} + B_{22} V_{i}}} \]

\[N \text{ is the total sample size; } N_{2} \text{ is the number of housewives in the sample who claim to shop regularly at the hypermarket; } N_{2} \text{ is the number of housewives who claim to shop occasionally at the hypermarket, and } N \text{ is the number of housewives who claim never to shop at the hypermarket.} \]

As in the simple two response category case, instead of maximizing the likelihood itself, it is usual to maximize the logarithm of the likelihood. In the 3 response category case the log likelihood function (27) generalises to

\[\log \Lambda = \sum_{i=1}^{N_{2}} \log f_{0}(U_{i}, V_{i}) + \sum_{i=N_{2}+1}^{N} \log f_{1}(U_{i}, V_{i}) \]

\[\log \Lambda = \sum_{i=1}^{N_{2}} \log f_{0}(U_{i}, V_{i}) + \sum_{i=N_{2}+1}^{N} \log f_{1}(U_{i}, V_{i}) \]

The maximum can be found by partially differentiating equation (42) with respect to its parameters and setting the partial derivatives equal to zero. The solution of the resulting set of equations yields the maximum likelihood.
parameter estimates. The computer routine described in Appendix 1(b) performs the estimation automatically.

Extension of the maximum likelihood estimation procedure to the case of a 4 response category model or ultimately to a J response category model follows exactly the same principles as those outlined above in the extension of the estimation procedure from the 2 response category case to the 3 response category case. The computer routine described in Appendix 1(c) performs the estimation automatically for the 4 response category case.

(iii) Testing probability surfaces and goodness-of-fit statistics

The inferential tests and goodness-of-fit statistics discussed in II (iv) and II (v) apply equally as well in the multiple response category case as in the two response category case. The reader should therefore consult II (iv) and II (v). The only difference is that in the multiple response category case the definitions of a residual (29) and (30) must be generalised to the form

\[\tilde{r}_{rj} = \hat{r}_{rj} - \hat{p}_{rj} = e_{rj} \]

\[\frac{\tilde{r}_{rj} - \hat{p}_{rj}}{\hat{p}_{rj}(1-\hat{p}_{rj})} = e_{rj} \]

\[\hat{p}_{rj} \] is the predicted probability that the individual at locality \(i \) will choose the \(r \)th response category, and \(\tilde{r}_{rj} = 1 \) if category \(r \) is chosen and 0 otherwise. In the multiple response category case there are thus as many residual maps as there are response categories.

(iv) An empirical example

To illustrate the use of probability surface mapping in the multiple response category case, we will use once again the example of a marketing geographer who conducts a survey to investigate the trade area characteristics of a recently opened hypermarket. In this case he conducts a survey of the shopping habits of 144 housewives in the area surrounding the hypermarket and amongst other questions in the survey he asks each housewife whether she regularly shops at the hypermarket, occasionally shops at the hypermarket, or never shops at the hypermarket. Once again this information can be portrayed in map form as in Figure 9 (which is Figure 1 repeated for convenience), or in tabular form as in Table 4. Given this survey data, he then fits probability surfaces of a polynomial type using the program supplied in Appendix 1(b) and he achieves the results shown in Table 5.

Table 5 gives the maximized log likelihoods for probability surface models of orders 0 to 3; the differences between these maximized log likelihoods; the differences expected under the null hypothesis of no significant improvement between surface models of different orders; and the decision on the null hypothesis at conventional significance levels. Also given are the values of the two goodness-of-fit statistics discussed in II (v).

As in the example of Section II, the fact that the underlying regional structure of each response is symmetrical, results in the first order surfaces capturing little of this underlying structure, and consequently
<table>
<thead>
<tr>
<th>Respondent</th>
<th>U</th>
<th>V</th>
<th>Shopping at hypermarket</th>
<th>Respondent</th>
<th>U</th>
<th>V</th>
<th>Shopping at hypermarket</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.8</td>
<td>-2.8</td>
<td>N</td>
<td>55</td>
<td>-1.4</td>
<td>-0.4</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>-2.6</td>
<td>-2.3</td>
<td>N</td>
<td>56</td>
<td>-1.3</td>
<td>-0.8</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-2.3</td>
<td>-2.8</td>
<td>N</td>
<td>57</td>
<td>-0.8</td>
<td>-0.5</td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td>-2.3</td>
<td>-2.3</td>
<td>N</td>
<td>58</td>
<td>-0.7</td>
<td>-0.2</td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>-1.8</td>
<td>-2.6</td>
<td>N</td>
<td>59</td>
<td>-0.6</td>
<td>-0.8</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>-1.6</td>
<td>-2.8</td>
<td>N</td>
<td>60</td>
<td>-0.3</td>
<td>-0.5</td>
<td>R</td>
</tr>
<tr>
<td>7</td>
<td>-1.4</td>
<td>-2.1</td>
<td>0</td>
<td>61</td>
<td>0.2</td>
<td>-0.5</td>
<td>R</td>
</tr>
<tr>
<td>8</td>
<td>-1.4</td>
<td>-2.4</td>
<td>N</td>
<td>62</td>
<td>0.5</td>
<td>-0.2</td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>-0.9</td>
<td>-2.7</td>
<td>N</td>
<td>63</td>
<td>0.6</td>
<td>-0.7</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>-0.7</td>
<td>-2.2</td>
<td>R</td>
<td>64</td>
<td>0.7</td>
<td>-0.4</td>
<td>R</td>
</tr>
<tr>
<td>11</td>
<td>-0.5</td>
<td>-2.6</td>
<td>N</td>
<td>65</td>
<td>1.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>-0.2</td>
<td>-2.3</td>
<td>R</td>
<td>66</td>
<td>1.5</td>
<td>-0.5</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0.1</td>
<td>-2.6</td>
<td>N</td>
<td>67</td>
<td>1.7</td>
<td>-0.8</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0.6</td>
<td>-2.2</td>
<td>0</td>
<td>68</td>
<td>1.8</td>
<td>-0.3</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0.6</td>
<td>-2.8</td>
<td>0</td>
<td>69</td>
<td>2.1</td>
<td>-0.3</td>
<td>N</td>
</tr>
<tr>
<td>16</td>
<td>0.9</td>
<td>-2.6</td>
<td>R</td>
<td>70</td>
<td>2.2</td>
<td>-0.7</td>
<td>R</td>
</tr>
<tr>
<td>17</td>
<td>1.2</td>
<td>-2.3</td>
<td>0</td>
<td>71</td>
<td>2.8</td>
<td>-0.2</td>
<td>N</td>
</tr>
<tr>
<td>18</td>
<td>1.4</td>
<td>-2.9</td>
<td>N</td>
<td>72</td>
<td>2.9</td>
<td>-0.6</td>
<td>N</td>
</tr>
<tr>
<td>19</td>
<td>1.7</td>
<td>-2.1</td>
<td>0</td>
<td>73</td>
<td>2.9</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>20</td>
<td>1.7</td>
<td>-2.5</td>
<td>N</td>
<td>74</td>
<td>2.6</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>2.2</td>
<td>-2.6</td>
<td>N</td>
<td>75</td>
<td>2.5</td>
<td>0.2</td>
<td>R</td>
</tr>
<tr>
<td>22</td>
<td>2.4</td>
<td>-2.2</td>
<td>N</td>
<td>76</td>
<td>2.2</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>2.5</td>
<td>-2.8</td>
<td>N</td>
<td>77</td>
<td>2.7</td>
<td>0.7</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>2.7</td>
<td>-2.4</td>
<td>N</td>
<td>78</td>
<td>1.6</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>2.9</td>
<td>-1.1</td>
<td>N</td>
<td>79</td>
<td>1.5</td>
<td>0.5</td>
<td>R</td>
</tr>
<tr>
<td>26</td>
<td>2.8</td>
<td>-1.9</td>
<td>N</td>
<td>80</td>
<td>1.2</td>
<td>0.2</td>
<td>R</td>
</tr>
<tr>
<td>27</td>
<td>2.6</td>
<td>-1.5</td>
<td>N</td>
<td>81</td>
<td>-0.9</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>2.1</td>
<td>-1.8</td>
<td>0</td>
<td>82</td>
<td>-0.8</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>-1.8</td>
<td>-1.2</td>
<td>R</td>
<td>83</td>
<td>-0.6</td>
<td>0.6</td>
<td>R</td>
</tr>
<tr>
<td>30</td>
<td>-1.7</td>
<td>-1.6</td>
<td>0</td>
<td>84</td>
<td>-0.2</td>
<td>0.6</td>
<td>N</td>
</tr>
<tr>
<td>31</td>
<td>-1.4</td>
<td>-1.2</td>
<td>0</td>
<td>85</td>
<td>0.2</td>
<td>0.2</td>
<td>R</td>
</tr>
<tr>
<td>32</td>
<td>-1.1</td>
<td>-1.7</td>
<td>0</td>
<td>86</td>
<td>0.2</td>
<td>0.7</td>
<td>R</td>
</tr>
<tr>
<td>33</td>
<td>-0.8</td>
<td>-1.5</td>
<td>0</td>
<td>87</td>
<td>0.6</td>
<td>0.8</td>
<td>N</td>
</tr>
<tr>
<td>34</td>
<td>-0.6</td>
<td>-1.2</td>
<td>R</td>
<td>88</td>
<td>0.8</td>
<td>0.2</td>
<td>R</td>
</tr>
<tr>
<td>35</td>
<td>-0.4</td>
<td>-1.6</td>
<td>0</td>
<td>89</td>
<td>1.2</td>
<td>0.7</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>-0.2</td>
<td>-1.1</td>
<td>N</td>
<td>90</td>
<td>1.5</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>0.3</td>
<td>-1.2</td>
<td>0</td>
<td>91</td>
<td>1.8</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>0.3</td>
<td>-1.8</td>
<td>0</td>
<td>92</td>
<td>1.8</td>
<td>0.8</td>
<td>R</td>
</tr>
<tr>
<td>39</td>
<td>0.7</td>
<td>-1.2</td>
<td>R</td>
<td>93</td>
<td>2.1</td>
<td>0.3</td>
<td>R</td>
</tr>
<tr>
<td>40</td>
<td>0.8</td>
<td>-1.7</td>
<td>0</td>
<td>94</td>
<td>2.3</td>
<td>0.6</td>
<td>N</td>
</tr>
<tr>
<td>41</td>
<td>1.2</td>
<td>-1.2</td>
<td>R</td>
<td>95</td>
<td>2.5</td>
<td>0.2</td>
<td>R</td>
</tr>
<tr>
<td>42</td>
<td>1.3</td>
<td>-1.8</td>
<td>0</td>
<td>96</td>
<td>2.7</td>
<td>0.8</td>
<td>N</td>
</tr>
<tr>
<td>43</td>
<td>1.5</td>
<td>-1.5</td>
<td>0</td>
<td>97</td>
<td>-2.9</td>
<td>1.9</td>
<td>N</td>
</tr>
<tr>
<td>44</td>
<td>1.8</td>
<td>-2.7</td>
<td>R</td>
<td>98</td>
<td>-2.1</td>
<td>1.3</td>
<td>N</td>
</tr>
<tr>
<td>45</td>
<td>2.3</td>
<td>-1.4</td>
<td>N</td>
<td>99</td>
<td>-2.5</td>
<td>1.7</td>
<td>N</td>
</tr>
<tr>
<td>46</td>
<td>2.3</td>
<td>-1.9</td>
<td>N</td>
<td>100</td>
<td>-2.2</td>
<td>1.4</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>2.5</td>
<td>-1.2</td>
<td>0</td>
<td>101</td>
<td>-1.9</td>
<td>1.9</td>
<td>R</td>
</tr>
<tr>
<td>48</td>
<td>2.9</td>
<td>-1.7</td>
<td>N</td>
<td>102</td>
<td>-1.7</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>-2.8</td>
<td>-0.8</td>
<td>N</td>
<td>103</td>
<td>-1.4</td>
<td>1.8</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>-2.8</td>
<td>-0.4</td>
<td>0</td>
<td>104</td>
<td>-1.2</td>
<td>1.1</td>
<td>R</td>
</tr>
<tr>
<td>51</td>
<td>-2.3</td>
<td>-0.7</td>
<td>R</td>
<td>105</td>
<td>-0.7</td>
<td>1.4</td>
<td>0</td>
</tr>
<tr>
<td>52</td>
<td>-2.2</td>
<td>-0.2</td>
<td>R</td>
<td>106</td>
<td>-0.4</td>
<td>1.2</td>
<td>R</td>
</tr>
<tr>
<td>53</td>
<td>-1.7</td>
<td>-0.7</td>
<td>0</td>
<td>107</td>
<td>-0.3</td>
<td>1.6</td>
<td>0</td>
</tr>
<tr>
<td>54</td>
<td>-1.6</td>
<td>-0.2</td>
<td>0</td>
<td>108</td>
<td>0.0</td>
<td>1.5</td>
<td>R</td>
</tr>
</tbody>
</table>

Table 4 - continued
Table 5.

<table>
<thead>
<tr>
<th>Order of surfaces</th>
<th>Maximized log likelihood</th>
<th>Difference between the maximized log likelihoods of surface orders</th>
<th>Goodness of fit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observed</td>
<td>Expected under H₀</td>
<td>D.F.</td>
</tr>
<tr>
<td>0</td>
<td>−154.634</td>
<td>213.638</td>
<td>3.744</td>
</tr>
<tr>
<td>1</td>
<td>−154.421</td>
<td>47.370</td>
<td>8.406</td>
</tr>
<tr>
<td>2</td>
<td>−107.051</td>
<td>1.019</td>
<td>10.046</td>
</tr>
<tr>
<td>3</td>
<td>−104.832</td>
<td>3.079</td>
<td>12.145</td>
</tr>
</tbody>
</table>

The first order surfaces provide an insignificant improvement over the zero order surfaces. The second order surfaces, however, capture a significant amount of the underlying regional structure and it is clearly worthwhile making an exception to the test procedure explained in II (iv) hypothesis b' and extending the models to this higher order. The increased complexity of the probability surface models associated with moving from second order surfaces to third order surfaces is associated with only a minor improvement in the maximized log likelihood, and thus, once again, there is no significant advantage to be gained in fitting third order surfaces. The second order surfaces are therefore the appropriate surfaces to fit and they represent expressions of the underlying regional structure. Figures 10 (a), (b) and (c) (which are Figures 2, 3 and 4 repeated for convenience but without the hand drawn contours) show respectively the second order probability surfaces of regularly shopping at the hypermarket, occasionally shopping at the hypermarket and never shopping at the hypermarket. The reader should note, once again, how the probability surface of regularly shopping at the hypermarket is a 'dome' centred on the hypermarket, how the probability surface of occasionally shopping at the hypermarket has a 'ring doughnut' type of structure with the highest predicted probabilities occurring in a ring or horseshoe some distance from the hypermarket, and how the probability surface of never shopping at the hypermarket is a flat-bottomed 'basin' centred on the hypermarket.

In addition to the inferential tests presented in Table 5, residuals from the probability surface maps should be mapped and an attempt made to assess the amount of systematic spatial variation in these maps. As in the previous example, the program presented in Appendix 1(b) automatically prints both raw residuals (see equation 43) and standardised residuals (see equation 44) and the construction of these maps will be left as an exercise for the reader.

Fig. 10(a) 2nd order probability surface of regularly shopping at the hypermarket
Fig. 10(b) 2nd order probability surface of occasionally shopping at the hypermarket

Fig. 10(c) 2nd order probability surface of never shopping at the hypermarket
IV EXTENSIONS AND PROBLEM AREAS

(1) Introduction

Probability surface mapping is an extension of one of the oldest and simplest techniques in spatial analysis. It enables the researcher to use the type of categorized variables which frequently are available but which previously were viewed as unmappable by the trend surface method. It therefore allows the geographer to pose and answer new questions and helps him to come to terms with the imperfect types of data which are often faced in geographical research. It is a method in its infancy and there is much developmental work yet to be done. The user should remember, however, that many of the problems identified in normal trend surface mapping remain problems in probability surface mapping. Consequently these problems must be treated with the same degree of caution. In this concluding section we will therefore briefly consider some of the many possible extensions to probability surface mapping, and some of the problem areas the user must be aware of.

(ii) The use of other functional forms

Although the most widely used form of the function $f(u, v)$ in traditional trend surface models is the power series polynomial, many other functional forms have also been used. These other functional forms can equally be used in the case of probability surface models, and perhaps the simplest potential extensions of the procedures outlined in this monograph involve the modification of the programs presented to handle these other functional forms.

Three potentially valuable extensions of this type would involve:

a) the use of a double Fourier series functional form. In trend surface mapping this form of function has been found to be of value where the response variable, the variable to be mapped, behaves in a spatially oscillatory or repetitive manner (see Davis, 1973, p.358-374);

b) the use of a functional form with three rather than two constituent coordinates. In this case the function has the general form $f(u, v, w)$. Trend surfaces using this functional form were first developed in petrology by Pelkart (1962) and others for use with three-dimensional rock bodies. Using this functional form contour lines on normal trend surfaces become contour envelopes, and the effect is to define hypersurfaces (see Davis, 1973, p.355). The use of such a functional form in probability surfaces would result in the mapping of probability hypersurfaces;

c) the use of an orthogonal polynomial functional form. This form of function has become increasingly important in trend surface mapping in recent years. (see Whitten, 1970, 1972) for it has a number of advantages over the more widely used nonorthogonal polynomial form. These advantages include the added numerical accuracy it is possible to achieve in the computation of the parameter estimates (see Mather, 1976, p.139-142) and the provision of information concerning the importance of each orthogonal parameter.

(iii) Programs for fitting different surfaces to different responses

Probability surface models are essentially sets of linked models; two linked models in the two response category case producing two probability surface maps, three linked models in the three response category case producing three probability surface maps and so on. The predicted probabilities at any locality in each set of maps sum to one. To produce the J probability surface maps in a J response category case, the programs presented in Appendix I(a), I(b) and I(c) fit the same order of surface to each response. A logical extension of these programs would be to allow a different order of surface to be fitted to each of the J responses, whilst retaining the property that the predicted probabilities of the J responses at any locality must sum to one. This extension is simply a computer programming problem, it involves no alterations to the structure of the probability surface models outlined above.

(iv) Ordered categorizations

Throughout the monograph no account has been taken of any ordering which might exist amongst the response categories. A potential extension to the probability surface models outlined is to attempt to take account in the specification of the models and in the estimation procedures of any ordering which might exist amongst the response categories. Cox (1970, p.104) presents a nonlinear model which takes account of the ordering of the responses in a particular three category situation.

(v) Inference and estimation considerations

In II (iv) and (v) we discussed the need for a test statistic to evaluate the amount of systematic spatial variation in the maps of residuals from probability surfaces of different orders, and the need to resolve what constitutes an appropriate goodness-of-fit statistic. Although these are perhaps the most urgent inferential matters to be resolved, consideration must also be given to the question of how appropriate is the maximum likelihood estimation method and inferential tests (see equation 28) based upon it, in the case of small samples. Some limited Monte Carlo experiments described by Domenich and McFadden (1975, p.112-117) suggest that the maximum likelihood estimators perform reasonably well when compared with the alternative weighted least squares estimators in small samples, but further small sample Monte Carlo experiments would be useful.

(vi) Graphical improvements

Although the line printer maps produced by the programs given in Appendix I(a), I(b) and I(c) provide a quick and reasonably accurate method of displaying probability surfaces, there is clearly considerable potential for improving the quality of the maps produced, either by using more elaborate line printer techniques, or drum or flat bed plotter methods (see Peuker, 1972; Davis and McCullagh, 1979; Rhind, 1977). The additional use of three-dimensional perspective views of the probability surfaces would also help to improve the graphical output from the programs presented.

(vii) Spatial distribution of the data points

In most text book discussions of traditional trend surface mapping the user is warned that the spatial arrangement of the data points can have profound effects on the shape of the computed trend surfaces (Davis, 1973, p.349-352; Mather, 1976, p.120-130; Unwin, 1975a; p.31-32). Given that there are at least as many, preferably many more, data points than there are parameters to be estimated in the trend surface model, the user is warned
that the data points should have an even spatial distribution, and that the map area should be approximately square.

If these two conditions are not satisfied, the shape of the trend surface fitted can be greatly distorted. For example, if there are few data points at the edges of the map area, the fitted surfaces lack constraints on their form in these areas. Whatever slope exists in the region of the map in which there is data point control, is extrapolated without limits along the map edges. This creates what are termed 'edge effects', and these effects can be very serious in the case of higher order surfaces. To guard against these effects it is wise to form a 'buffer region' (Davis, 1973, p.330) of control points around the map, so that edge effects can be concentrated into this buffer region, leaving the area of interest with adequate data point control. In addition to having sufficient data point control at the edges of the map, the user must also take care that the data point distribution is in no way peculiar, for example, highly clustered or restricted to a narrow strip across the map area (Doveton and Parsley, 1970). He should also ensure that the map area is not markedly rectangular in shape. If it is there will be a pronounced tendency for contours on higher order surfaces to become elongated parallel to the long axis of the map area.

These problems associated with the spatial distribution of the data points are potentially as great a threat to the user of probability surface mapping as they are to the user of trend surface mapping. The user of probability surface mapping should therefore attempt to ensure an even spatial distribution of data points and an approximately square map area. If it is in the situation of being able to construct a sample design for the collection of data to be used in probability surface mapping, he should consider using the spatially stratified random sampling method which underlies Figures 5 and 9.

(ix) The problem of multicollinearity

In trend surface mapping, accurate calculation of the parameter estimates of traditional polynomial trend surface models is difficult, for the matrix of sums of squares and cross-products of the explanatory variables (the u_i, v_i terms) is almost certain to be nearly singular for surfaces of order three or more. This results from the fact that the explanatory variables will be approximately linearly related, or in other words because of the presence of a high degree of multicollinearity.

In the presence of such a high degree of multicollinearity, the ordinary least squares estimation methods employed by many of the standard trend surface computer programs produce inaccurate results, particularly when the problem is compounded by a poor data point distribution, a poorly selected origin for the co-ordinate system, and a computer with a short word length (see Unwin, 1975b; Mather, 1977). Such problems can be minimized by using the orthogonal polynomials mentioned in (iv) above, by the choice of a sensible origin for the co-ordinate system and/or scaling of the explanatory variables, by choice of a sampling design which produces a better data point distribution and the use of a computer with as long a word as possible.

In the case of probability surface mapping we use a maximum likelihood method of parameter estimation, however, a high degree of multicollinearity still causes problems. Cox (1970, p.90) for example, discussing maximum likelihood estimation of nonlinear logit models, states that 'there is likely to be difficulty in finding (the parameter estimates) if the columns of the (matrix of explanatory variables) are nearly linearly dependent'. Therefore it may be good to have a preliminary calculation of the formal 'correlation' matrix of the regressor (i.e. explanatory) variables, followed if necessary by a linear transformation of the regressor variables to ones more nearly orthogonal in the usual least squares sense'. In this monograph no such transformation has been conducted in the examples given, for a sensible origin for the co-ordinate system was chosen, the sampling design employed produced a good data point distribution, and the programs presented have been restricted to fitting surfaces no higher than fourth order. No difficulties were encountered in finding the parameter estimates in less favourable circumstances, however, or if the user felt that it was absolutely essential to fit probability surfaces of higher order, the use of orthogonal polynomials, and the extension of the computer programs presented here to handle them, appears to be a possible way forward. Even in the absence of such a need, however, it would be interesting to compare the results presented in II (vi) and III (iv) based on the more traditional nonorthogonal polynomials, with those achieved using orthogonal polynomials.

BIBLIOGRAPHY

A. Regression and trend surface analysis

Mather, P.M. (1977), Clustered data-point distributions in trend surface analysis. Geographical Analysis, 9, 84-93.

B. Statistical analysis of categorized variables

Richards, M.G. and Ben-Akiva, M.E. (1975), A disaggregate travel demand model. (Farnborough, Saxon House).

C. Other references

APPENDIX 1 Computer programs for probability surface mapping

Fortran programs for the two, three and four response category cases are provided in this Appendix. All the programs share certain common subroutines which are listed in (d) below, and all allow the user to fit, in a sequential manner, polynomial probability surfaces from order 1 up to order 4. It should be noted in this context that although users of traditional trend surface mapping have fitted polynomial trend surfaces more complex than 4th order, and although the programs provided in the Appendix could be extended to allow similar fitting of surfaces more complex than 4th order, this facility is not provided because there are marked dangers, both theoretical and numerical, associated with the fitting of such higher order surfaces.

The programs provided in this Appendix must be viewed as first generation probability surface programs, capable of considerable future refinement and extension. They are presented simply to allow the method to break through what might otherwise prove to be an initial computational barrier to its wider implementation. Readers so inclined, are encouraged to develop and refine the programs presented here.

Appendix 1(a) A Fortran program for the two response category case

The program presented in Table 6 has the following stages.

a) Input. It starts by reading a card which specifies the highest order of surfaces the user wishes to fit (IORD); the number of respondents represented by the input sample (NSAMPL), and the number of respondents who have chosen response category one in terms of the example in II (vi) the number who have claimed to shop at the hypermarket (N1). It then reads another card which specifies the overall dimensions the user wishes the probability surfaces to be drawn to (10.0 inches by 10.0 inches in the example in II (vi) before reduction to the monograph page size); the UI and VI values of the corners of the maps; the contour interval required (0.10 in the example), and the so called reference contour, a contour which should be set to a figure in the middle of the expected range of predicted probabilities (set at 0.50 in the example for convenience). Following this it reads a set of cards. These give the geographical co-ordinates of the sample localities (see Table I). The input order required of these cards demands that all respondents choosing response category one form the first N1 cards. The next set of cards N1+1 to NSAMPL are the housewives claiming not to shop at the hypermarket. The program finishes the way because the gradients are wrong or because computer rounding errors make it impossible to continue the calculation efficiently. If this message occurs and if the final derivative vector (the G vector printed immediately before the 'Maximized Log Likelihood Value' statement) does not have small components, then it is probably due to incorrect derivatives. The user should note that this error has never been encountered by the author and should check that he has implemented the program correctly.

b) Calculations. After receiving the input information the program then fits in a sequential manner, probability surfaces of order 1 to IORD. For each order of probability surface the parameter estimates of the probability surface models are estimated using the maximum likelihood method, and these parameter estimates are then used as the basis of a line printer subroutine which draws the probability surface maps.

c) Output. The geographical co-ordinates of the sample households in the order in which they were input, see (a) above, are listed first. Then for each order 1 to IORD, the following is provided: the maximized log likelihood parameter estimates, standard errors, variance-covariance matrix of the parameter estimates, predicted probabilities of giving each response for each of the sample respondents, raw residuals, standardised residuals, and finally the probability surface maps for both the possible responses. Prior to this the maximized log likelihood for the probability surface models of order 0, that is to say for the probability surface models containing only an intercept term, is printed.

The program given in Table 6 has the following size restrictions. The maximum number of respondents in the sample (NSAMPL) allowed is 250. The maximum number who choose response category one (N1) allowed (i.e. the number who have claimed to shop at the hypermarket) is 125. The maximum number who choose response category two (NSAMPL-N1) allowed (i.e. the number who have claimed not to shop at the hypermarket) is 200. These size restrictions are easily changed however and in Appendix 2(a) the changes required in the program when NSAMPL = AT1, N1 = AT2 and (NSAMPL-N1) = AT3 (where AT1, AT2, and AT3 represent any arbitrary numbers) are given, thus allowing the user to modify the size restrictions of the program to suit his own needs.

Before using the program for his own research, the reader is advised to check, using the example data set of Table 1, that he has punched and implemented the program correctly. Minor differences in numerical results from those given in the next section can be expected to occur if the computer used by the reader has a level of precision which differs from that of the University of Bristol machine.

After ensuring that the program has been implemented correctly and reproduces the results reported in II (vi), other possible (but rare) errors which the user may encounter are as follows.

a) Program exits from subroutine VA06AD with message 'Error exit from VA06AD'. The subroutine may finish in this way because the gradients are wrong or because computer rounding errors make it impossible to continue the calculation efficiently. If this message occurs and if the final derivative vector (the G vector printed immediately before the 'Maximized Log Likelihood Value' statement) does not have small components, then it is probably due to incorrect derivatives. The user should note that this error has never been encountered by the author and should check that he has implemented the program correctly.

b) Program exits from subroutine VA06AD with message 'VA06AD has made 2000 calls of CALCFG'. The program has failed to achieve a maximum after 2000 iterations (the arbitrarily set upper limit). The program normally achieves a maximum in less than max(100, 10 x n) where n here is the total number of parameters in the set of probability surface models, and therefore this suggests serious problems caused by linear dependence between the explanatory variables. The user should read Section IV (viii). He should also check that additional comment instruction (b) given in the next paragraph has been obeyed and try following the instructions given in (c) below to see if this improves the position.

c) Negative square root problem immediately after VA06AD. The user should change the arbitrarily set initial parameter estimates given in lines 33 and 35 of subroutine SURF. It is suggested that line 35 be changed from X(I)=0.01D0 to X(I)=0.02D0, or X(I)=0.03D0.

Additional comments.

a) The probability surface maps are printed on the line printer. The program...
gram assumes that the line printer prints 8 lines per vertical inch. The
user should check what number of lines per vertical inch are printed by his
local line printer. In many computer centres 6 lines per vertical inch may
be the norm. If this is the case, the user should change line 24 in the
main part of the program from NL=INT(VERTx8.0+0.5) to NL=INT(VERTx6.0+0.5).
b) Subroutine VA06AD works most efficiently when the observed values of the
explanatory variables differ in scale by a factor of no more than 100. In
the polynomial probability surface case the kth order models have a range
of values from Ui to Uf and Vi to Vf. To ensure that this range of values
approximates to the range in which subroutine VA06AD works most efficiently,
it is essential that the origin (the zero point) of the co-ordinate system
coincides with the centre of the study area (see Figure 5). Also the units
in which Ui and Vi are expressed should follow the pattern of Figure 5.
That is to say, ideally there should be only one number to the left of the
decimal point.
c) The DATA statement in subroutine PMAP sets the characters to be used in
the line printer maps (see Figures 6, 7 and 8, III (vi)). The user should
note that the small dot symbol is used for every other probability division
to aid the visual appearance of the maps. He should also note that the
eleventh probability division is denoted in the DATA statement and in
Figures 6, 7 and 8, by the symbol \ . Users unable to punch this symbol at
their local computer centre should replace it in the DATA statement with a
symbol $.

Table 6

PROBABILITY SURFACE PROGRAMME FOR A 2 CATEGORY SITUATION

WRITTEN BY NEIL WRIGLEY, DEPT OF GEOGRAPHY, UNIVERSITY OF BRISTOL

COMMON/A(250,15),A2(125,15),A1(280,15),NSAMPL.NI.NIA,K,H48

. READ IN IORDS HIGHEST SURFACE ORDER TO BE FITTED, 1, 2, 3, OR 4

. NUMBER OF SAMPLE LOCALITIES, Ni NUMBER OF LOCALITIES WHERE

RESPONSE CATEGORY ONE IS RECORDED

. DATA CARD, COL 1-7 VERT, COLS 13-14 WIDTH. COLS 15-19 REFERENCE

. CONT, COLS 20-24 MAXIMUM AND MINIMUM ALONG HORIZONTAL

. AXIS. COLS 25-29 MAXIMUM AND MINIMUM ALONG VERTICAL AXIS

. * DATA CARD. COL 1-9, VERT. COL 15-19 VMAX. COLS 25-29 VMIN. COLS 30-34 =**

. MAX. COLS 35-39 MIN. COLS 40-44 = VMAX

. * READ IN GEOGRAPHICAL CO-ORDINATES OF EACH SAMPLE LOCALITY,**

. UM-HORIZONTAL CO-ORDINATE, V(I)-VERTICAL CO-ORDINATE, IN FORMAT

. (F8.4,1X,F8.4) (N.B. IN THE PROGRAMME THESE CO-ORDINATES ARE

._STORED IN MATRIX A) * ORDER OF CARDS-ALL SAMPLE LOCALITIES**

. WHERE RESPONSE CATEGORY ONE IS RECORDED, FOLLOWED BY ALL LOCALITIES

. WHERE REMAINING RESPONSE CATEGORY IS RECORDED * CREATE CONSTANT**

. TERM s

**. PRINT SAMPLE LOCALITIES **

. ** START OF MAIN LOOP **

. ID=S

. DO 7 1=1,IORD

. ID=ID+1

. CONTINUE

. STOP END

SUBROUTINE SURFOORD. HL NC. UAX. VAX. UMAX. MIN. VMAX. VMIN. REFCC. CINT

COMMON/A(250,15),A2(125,15),A1(280,15),NSAMPL.NI.NIA,k.H48

DOUBLE PRECISION B(256,1),X(I),D(I),W,RF(I)

DOUBLE PRECISION X. F. G STEPS ACC.W.MINUS,STER,TSTAT

DIMENSION C18(250),C13(250)

DIMENSION P(256,1),C(256,1)

DIMENSION X14(15),C14(15)

. * THIS IS THE MAIN PART OF THE PROGRAMME. IT CALCULATES THE**

. PARAMETER ESTIMATES OF THE PROBABILITY SURFACE MODEL USING MAXIMUM

. LIKELIHOOD ESTIMATION. IT USES POWELL'S HYBRID STEEP DESCENT

. AND GENERALISED NEWTON METHOD

. * FOLLOWING ARBITRARILY SETS THE ITERATION INSTRUCTIONS **** MAXFUN**

**. MAXFUN=26688 **

1PRINT=28
CALCULATE NUMBER OF PARAMETERS **** ****** *******

\[K = \frac{(IORD+1)(IORD+2)}{2} \]

\[N_S = K - N_1 + 1 \]

GENERATE ARBITRARY INITIAL PARAMETER ESTIMATES ****

\[X(1) = 0.0 \]

DO 2 1, 2, N2

\[X(I) = 0.1 \]

END

GENERATE POLYNOMIAL TERMS **** ****** *******

IF (IORD.EQ.1) GO TO 12

\[K(1) = (K(1) + (K2 + 2)/2 \]

KDB = KDA + 1

DO 14 J = 1, NSAMPL

\[A(J, KDB) = A(J, KDA) \]

14 CONTINUE

DO 16 1, 101, NSAMPL

\[A(J, KDB) = A(J, KDA) \]

16 CONTINUE

CALCULATE PARAMETER ESTIMATES **** ****** *******

DO 5 1, N1

\[A2(J) = A(J) \]

5 CONTINUE

DO 8 J = 1, N1

\[X(J) = SNGL(X(J)) \]

8 CONTINUE

COMPUTE ESTIMATED PROBABILITIES **** ******

CALL MC81AS(A, X2, 02, NSAMPL, K, 1, 258, 15, 258)

DO 633 I = 1, NSAMPL

\[Z2 = \exp(OZA(1,1)) \]

\[PROB1(1) = OZA(1,1)/Z2 \]

IF (PROB1(I).EQ.0.0) PROB1(I) = 1.0

IF (PROB1(I).LT.0.1) PROB1(I) = 0.0

C10(I) = 4RT(PROB1(I)

C13(I) = SORT(PROB1(I)

633 CONTINUE

WRITE(6, 6289) (ICOL, ICOL = 1, IEND)

WRITE(6, 8883)

DO 7802 J = 1, MAX

\[IC(J) = MAXINDEX * (I + J - 1) \]

\[PROBI(I) = SNGL(U(IC(J))) \]

7801 PROBI(MNSGL(U(INDEX))

7002 WRITE(6, 8930) IORD

638 X2(1, 1.1) = NSAML(X(1))

FOR EACH SAMPLE LOCALITY' / PREDICTED PROBABILITES STANDARIZED RESIDUALS'

DO 8928 1 = 1, N1

\[RAWR1(I) = X(I) - PROB1(I) \]

\[RES1 = RAWR1/C18(I) \]

\[RES = RAWR4/C13(I) \]

8921 CONTINUE

WRITE(6, 8982) PROB1(1), PROB4(1), RAWR1, RAWR4, RES1, RES4

DO 8921 I = 1, N1

RAWR4 = 0.0

8929 CONTINUE

WRITE(6, 8939)

DO 8930 I = 1, 1

8933 FORMAT(2X, "ICAT 1 RESP CAT 2 RESP CAT 1 RESP CAT 2 ICAT 1 RESP CAT 2")

8929 WRITE(6, 8939)

DO 8930 I = 1, 1

8933 FORMAT(2X, "ICAT 1 RESP CAT 2 RESP CAT 1 RESP CAT 2 ICAT 1 RESP CAT 2")

8929 WRITE(6, 8939)

DO 8930 I = 1, 1

8933 FORMAT(2X, "ICAT 1 RESP CAT 2 RESP CAT 1 RESP CAT 2 ICAT 1 RESP CAT 2")

8929 WRITE(6, 8939)

DO 8930 I = 1, 1

8933 FORMAT(2X, "ICAT 1 RESP CAT 2 RESP CAT 1 RESP CAT 2 ICAT 1 RESP CAT 2")

8929 WRITE(6, 8939)

DO 8930 I = 1, 1

8933 FORMAT(2X, "ICAT 1 RESP CAT 2 RESP CAT 1 RESP CAT 2 ICAT 1 RESP CAT 2")

8929 WRITE(6, 8939)

DO 8930 I = 1, 1

8933 FORMAT(2X, "ICAT 1 RESP CAT 2 RESP CAT 1 RESP CAT 2 ICAT 1 RESP CAT 2")

8929 WRITE(6, 8939)

DO 8930 I = 1, 1

8933 FORMAT(2X, "ICAT 1 RESP CAT 2 RESP CAT 1 RESP CAT 2 ICAT 1 RESP CAT 2")

8929 WRITE(6, 8939)

DO 8930 I = 1, 1

8933 FORMAT(2X, "ICAT 1 RESP CAT 2 RESP CAT 1 RESP CAT 2 ICAT 1 RESP CAT 2")

8929 WRITE(6, 8939)
CALL MCSIAS(A2,XN1,81,N1,K11,125,15,125)
DO 87 I=1,N1
U1(I,1)=U1(I,1)**2
CALL MCSIAS(AAN1,U6,NSAMPL,Kt1,258,15,258)
DO 87 141,NSAMPL
U6=U6**2*EXP(U6(1,1))
DO 98 101,NSAMPL
U9(I,1)=U9(I,1)**2
DO 91 I=1,NSAMPL
Z1421+ALOG(U9(I,1))
FA4=1.8*(2-21)*DBLE(FA)
C
***** -F IS THE LOG LIKELIHOOD VALUE
C
*** CALCULATE 1ST DERIVATIVES OF LOG LIKELIHOOD FUNCTION *****
44*DO 44 I=1,NSAMPL
ROB1(1,1)=1.0
DO 45 I=1/N1
ROV2(1,1)=1.8
DO 94 141,NSAMPL
U6(I,1)=U6(I,1)/U9(I,1)
DO 92 .141.1
(DO 92 I=1,NSAMPL
...)
93
U13(041/13(1.41)-U12(1, J)
DO 181 I=1,N1
G(I)*U13(1,1)
DO 184 I=1,N1
G(I)=G(I)
C
***** G IS TRUE VECTOR OF 1ST DERIVATIVES 44*......
FUNCTION PROB(PESTS,WORK,N,NORD,U,V,JZ)
C
*** COMPUTES VALUE ON PROBABILITY SURFACE AT EACH POINTV
DIMENSION PESTS(N),VORK(N)
OZ14PESTS(1)=PESTS(1)+(PESTS(2)*U)+(PESTS(3)*V)
e22=EXP(-022)
822=822/22
PROB=822/22
CONTINUE
RETURN
END
Appendix 1(b) A Fortran program for the three response category case

The program presented in Table 7 basically follows the same structure as that in Table 6 and discussed in (a) above. The reader should therefore ensure that he has understood that discussion and should then take note of the following alterations.

a) Input alterations. The first card now specifies the highest order of surface the user wishes to fit (IORD); the number of respondents in the sample (NSAMPL); the number of states (IORD); the input order of the set of cards which follow and which give the geographical co-ordinates now demands that all respondents choosing response category 1 are read in first, followed by all respondents choosing response category 2, followed by all respondents choosing response category 3 (this is the arbitrarily chosen response category whose parameters have been set to zero, see III (i)). In the example in III (iv) Table 4 must therefore be re-organised so that all housewives claiming to shop regularly at the hyper-market are read in first, followed by all housewives claiming to shop occasionally at the hyper-market, followed by all housewives claiming never to shop at the hypermarket.

b) Output alterations. The output follows the structure outlined in (a) above and illustrated in Figures 6, 7, 8, 10 and Table 4. The user should be aware however, of the manner in which the parameter estimates, standard errors and parameter estimate/standard error ratios are printed in the multiple response case. Using 1st order probability surface models of the 3 response category kind as an example, the parameter estimates, standard errors and parameter estimate/standard error ratios are printed as follows.

<table>
<thead>
<tr>
<th>PARAMETER ESTIMATES</th>
<th>STANDARD ERRORS</th>
<th>PARAMETER EST/STANDARD ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.5533</td>
<td>0.1960</td>
<td>-2.8225</td>
</tr>
<tr>
<td>0.0131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.0454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.2395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0699</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first three parameter estimates are β_0, β_1, β_2; the second three are α_1, α_2, α_3; (see III (i) for clarification). That is to say, the full set of parameter estimates associated with category 1 are printed prior to the full set of parameter estimates associated with response category 2.

c) Size restriction alterations

The maximum number of respondents in the sample (NSAMPL) allowed remains the same as in the earlier program, i.e. 250. The maximum number who choose response category one (N1) allowed, is set at 100. The maximum number who choose response category two (N2) allowed, is set at 100. The maximum number who choose response category three (NSAMPL-N2-N1) allowed, is set at 150. These size restrictions, like those of the earlier program, are easily changed however, and in Appendix 2 (b) the changes required in the program when NSAMPL=N1, N2, N3=N2 are stated and (NSAMPL-N2-N1)=N3 are given, thus allowing the user to modify the size restrictions of the program to suit his own needs.

Table 7

PROBABILITY SURFACE PROGRAMME FORA 3 CATEGORY SITUATION

WRITTEN BY NEIL WRIGLEY, DEPT OF GEOGRAPHY, UNIVERSITY OF BRISTOL

COMMON/AONE/A(250,15),A2(180,15),A3(180,15),A1(150,15),NSAMPL,NI,N21,N1A,N2A,N3A,K/K,KA2

READ IN IORD-HIGHEST SURFACE ORDER TO BE FITTED/1,2,3,4, OR 5

NSAMPL-MAX NUMBER OF SAMPLE LOCALITIES, N1=NUMBER OF LOCALITIES WHERE RESPONSE CATEGORY ONE IS RECORDED, N2=NUMBER OF LOCALITIES WHERE RESPONSE CATEGORY TWO IS RECORDED, N3=NUMBER OF LOCALITIES WHERE RESPONSE CATEGORY THREE IS RECORDED.

*** DATA CARD: COL 1-IORD COL 2-BLANK, COL 3-5=NSAMPL COL 6=BLANK, COL 7=NI, COL 8-BLANK, COL 11-13=N2B ****************************

READ...

1 FORMAT(11,1X,13/I,x,13.I,13)

** 参数表 **

<table>
<thead>
<tr>
<th>PARAMETER ESTIMATES</th>
<th>STANDARD ERRORS</th>
<th>PARAMETER EST/STANDARD ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.0699</td>
<td>-0.2395</td>
<td>-0.0854</td>
</tr>
<tr>
<td>-0.0454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.2395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0699</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first three parameter estimates are β_0, β_1, β_2; the second three are α_1, α_2, α_3; (see III (i) for clarification). That is to say, the full set of parameter estimates associated with category 1 are printed prior to the full set of parameter estimates associated with response category 2. **Size restriction alterations**

The maximum number of respondents in the sample (NSAMPL) allowed remains the same as in the earlier program, i.e. 250. The maximum number who choose response category one (N1) allowed, is set at 100. The maximum number who choose response category two (N2) allowed, is set at 100. The maximum number who choose response category three (NSAMPL-N2-N1) allowed, is set at 150. These size restrictions, like those of the earlier program, are easily changed however, and in Appendix 2 (b) the changes required in the program when NSAMPL=N1, N2, N3=N2, N3 are stated and (NSAMPL-N2-N1)=N3 are given, thus allowing the user to modify the size restrictions of the program to suit his own needs.

Table 7

PROBABILITY SURFACE PROGRAMME FOR A 3 CATEGORY SITUATION

WRITTEN BY NEIL WRIGLEY, DEPT OF GEOGRAPHY, UNIVERSITY OF BRISTOL

COMMON/AONE/A(250,15),A2(180,15),A3(180,15),A1(150,15),NSAMPL,NI,N21,N1A,N2A,N3A,K/K,KA2

READ IN IORD-HIGHEST SURFACE ORDER TO BE FITTED/1,2,3,4, OR 5

NSAMPL-MAX NUMBER OF SAMPLE LOCALITIES, N1=NUMBER OF LOCALITIES WHERE RESPONSE CATEGORY ONE IS RECORDED, N2=NUMBER OF LOCALITIES WHERE RESPONSE CATEGORY TWO IS RECORDED, N3=NUMBER OF LOCALITIES WHERE RESPONSE CATEGORY THREE IS RECORDED.

*** DATA CARD: COL 1-IORD COL 2-BLANK, COL 3-5=NSAMPL COL 6=BLANK, COL 7=NI, COL 8-BLANK, COL 11-13=N2B ****************************

READ...

1 FORMAT(11,1X,13/I,x,13.I,13)

** 参数表 **

<table>
<thead>
<tr>
<th>PARAMETER ESTIMATES</th>
<th>STANDARD ERRORS</th>
<th>PARAMETER EST/STANDARD ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.5533</td>
<td>0.1960</td>
<td>-2.8225</td>
</tr>
<tr>
<td>0.0131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.0454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.2395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0699</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first three parameter estimates are β_0, β_1, β_2; the second three are α_1, α_2, α_3; (see III (i) for clarification). That is to say, the full set of parameter estimates associated with category 1 are printed prior to the full set of parameter estimates associated with response category 2. **Size restriction alterations**

The maximum number of respondents in the sample (NSAMPL) allowed remains the same as in the earlier program, i.e. 250. The maximum number who choose response category one (N1) allowed, is set at 100. The maximum number who choose response category two (N2) allowed, is set at 100. The maximum number who choose response category three (NSAMPL-N2-N1) allowed, is set at 150. These size restrictions, like those of the earlier program, are easily changed however, and in Appendix 2 (b) the changes required in the program when NSAMPL=N1, N2, N3=N2 are stated and (NSAMPL-N2-N1)=N3 are given, thus allowing the user to modify the size restrictions of the program to suit his own needs.
CALCULATE NUMBER OF PARAMETERS********

\[K = \frac{(IORD+1) \times (10RD+2)}{2} \]

\[14 = K \times 2 \]

\[NIA = N / 1.1N20928 + 91N2A0142 + 1N48 = NSAMPL - N2K1 = K + 1 \]

GENERATE ARBITRARY INITIAL PARAMETER ESTIMATES********

\[\text{IF} (IORD \neq 8) \text{GO TO 9652} \]

\[X(1) = 1.080 \]

\[\text{DO 2 I = 2, 11} \]

\[X(I) = 8.1D8 \]

\[X(K1) = 1.000 \]

\[\text{DO 703 I0KILN783 X(I) = 8.1D8} \]

\[\text{GO TO 9655} \]

GENERATE POLYNOMIAL TERMS**********

\[\text{IF} (IORD \neq 1) \text{GO TO 12} \]

\[KDB = (IORD - 1) \times (IORD + 2) / 2 \]

\[KDBORDA = 1 \]

\[KE1 = IORD - 2 \]

\[KEA0 = (KE1 + 1) \times (KE1 + 2) / 2 \]

\[KEBREK = 1 \]

\[\text{DO 15 J = KE1, KEBREK} \]

\[A(I, KDB) = A(I, J) \times A(1, 2) \]

\[\text{CONTINUE} \]

\[\text{DO 16 J = 1, NSAMPL} \]

\[A(I, KDB) = A(I, KDB) \times A(I, 3) \]

\[\text{CONTINUE} \]

\[DO 12 \]

CALCULATE PARAMETER ESTIMATES**********

\[\text{IF} (IORD \neq 5) \text{GO TO 9654} \]

\[\text{DO 5 I = 2, N1} \]

\[A2(I, J) = A(I, J) \]

\[\text{DO 6 I = 1, N2} \]

\[J80 = I80 + 1 \]

\[J81 = I81 + J80 \]

\[A3(I, J80) = A(I, J) \]

\[\text{DO 8 I = N2 + 1, NSAMPL} \]

\[J82 = J82 + I - J81 \]

\[A4(I, J82) = A(I, J) \]

COMPUTE AND PRINT ESTIMATED PROBABILITIES AND RESIDUALS**

\[\text{CALL MC91AS(A, X21, OZA, NSAMPL, K, 1, 250, 15, 258)} \]

\[\text{CALL MC91AS(A, X22, OZA, NSAMPL, K, 1, 250, 15, 258)} \]

\[\text{DO 630 I = 1, N1} \]

\[\text{RAWRI} = (1.8 - PROBI(I)) \]

\[\text{RAWR2} = - PROBI(I) \]

\[\text{RES1} = RAWRI / CI1(I) \]

\[\text{RES2} = RAWRI / CI2(I) \]

\[\text{RES4} = RAWRI / CI3(I) \]

FOR EACH SAMPLE LOCALITY'/'PREDICTED PROBABILITIES AND STANDARISED RESIDUALS'**

\[\text{WRITE(6,8938)} \]

\[\text{FORMAT(/'/, 'RESP CAT 1 ((ESP CAT 2 RESP CAT 3 RESP CAT 1 RESP CAT 2 RESP CAT 3)')} \]

\[\text{WRITE(6,8981)} \]

\[\text{FORMAT(/'/, 'PREDICTED PROBABILITIES AND STANDATISED RESIDUALS')} \]

FOR EACH SAMPLE LOCALITY'/'PREDICTED PROBABILITIES AND STANDARTISED RESIDUALS'**

\[\text{WRITE(6,8938)} \]

\[\text{FORMAT(/'/, 'RESP CAT 1 ((ESP CAT 2 RESP CAT 3 RESP CAT 1 RESP CAT 2 RESP CAT 3)')} \]

\[\text{WRITE(6,8981)} \]

\[\text{FORMAT(/'/, 'PREDICTED PROBABILITIES AND STANDATISED RESIDUALS')**
8920 WRITE(6,8982) PROB1(1),PROB2(1),PROB4(1),RAWR1,RAWR2,RAWR4 RESI* RESL RES4 RES1 RES4
8921 DO 8921 I=N1A,N2A
RAVR1=PROBI(I)
RAVR2=PROB2(I)
RAVR4=PROB4(I)
RESI=RAWR1/C18(I)
RES2=RAWR2/C11(I)
RES4=RAWR4/C13(I)
8922 WRITE(6,8982) PROBI(I),PROB2(I),PROB4(I),RAWR1,RAWR2,RAWR4
8962 FORMAT(5F8.5,4X,F8.5,4X,F8.5,3X,6(F9.5,3X))
1243 DO 243 I=1,K
PESTS1(I,1)=X21(I,1)
243 PESTS2(I)=X22(I,1)
CALL PMAP(NL,NC,PESTS1,PESTS2,WORK,REFC,CINT,UAX,VAX,N,IORD,VMAX,UMIN,UMAX,VMIN)
RETURN
END
SUBROUTINE CALCFG(N,X,F,G)
DOUBLE PRECISION X,G,U12,U13,U18,F,DBLE
COMMON/ONE/A(258,15),A2(188,15),A3(180,15),A1(158,15)
1,N1A,N2A,N2B,N4B,K,K1,KA2
DIMENSION X(38),G(38)
DIMENSION 101(15,1),XN2(15,1),01(188,1),02(188,1)
DIMENSION U6(258,1),U7(258,1),U9(258,1)
DIMENSION ROW1(1,258),ROW2(1,108),ROW3(1,108)
DIMENSION 011(258,15),U12(1,15),U13(1,15),U18(1,15)
J2=8
DO 66 I=1,K
66 X141(I,1)=SNGL(X(I))
DO 67 I=1,141
J2=J2+1
67 XN2(J2,1)=SNGL(X(I))
U1=8.8
U2=8.8
210=0
CALL MC6IAS(A2,NI,H1,K,1,188,15,188)
CALL MCOIAS(A3,XN2,82,H2B,K,1,188,15,188)
DO 169 I=1,141
169 U1=U1+01(I,1)
DO 96 I=1,141
96 U2=U2+U1(I)
181 GM=1113(I,D
182 G(J4)-U18(1,I)
184 G(I)=-G(I)
G IS THE VECTOR OF 1ST DERIVATIVES
RETURN
END
Appendix 1(c) A Fortran program for the four response category case

The program presented in Table 8 follows the same structure as that discussed in (b) above and the minor alterations from the program in Table 7 are explained in the program itself. Appendix 1(c) contains the changes necessary to allow the user to modify the size restrictions of the program to suit his own needs. The program, Table 8, begins on page 65.

Appendix 1(d) The common subroutines

The programs listed in Tables 6, 7 and 8 utilise the common subroutines presented in Table 9. Subroutine VAO6AD is taken from the Harwell Algorithm Package and was written by M.J.D. Powell. The listing given below incorporates some minor changes by the author but it is essentially in its original form. It is reproduced here with the kind permission of the Controllers of the Harwell Algorithms Package.

APPENDIX 2 Alterations to size restrictions of computer programs

Appendix 2(a)

The following are the card changes necessary in the program listed in Table 6 when NSAMPL=AT1, N1=AT2 and (NSAMPL-N1)=AT3.

In main part of program:

COMMON/ONE/A(AT1,15),A2(AT2,15),A1(AT3,15),NSAMPL,N1,N1A,K,N4B

In subroutine SURF:

COMMON/ONE/A(AT1,15),A2(AT2,15),A1(AT3,15),NSAMPL,N1,N1A,K,N4B
DIMENSION C10(AT1),C11(AT1),C13(AT1)
DIMENSION PROB1(AT1),PROB2(AT1),PROB4(AT1),XZ1(15,1),XZ2(15,1)

CALL MCOIAS(A,XZ1,QZA,NSAMPL,K,1,AT1,15,AT1)

Appendix 2(b)

The following are the card changes necessary in the program listed in Table 7 when NSAMPL=AT1, N1=AT2, N2B=AT3 and (NSAMPL-N2B-N1)=AT4.

In main part of program:

COMMON/ONE/A(AT1,15),A2(AT2,15),A3(AT3,15),A1(AT4,15),NSAMPL,N1,N1A,K,N4B

In subroutine SURF:

COMMON/ONE/A(AT1,15),A2(AT2,15),A3(AT3,15),A1(AT4,15),NSAMPL,N1,N1A,K,N4B
DIMENSION XN1(15,1),Q1(AT2,1),U6(AT1,1),U9(AT1,1),ROW1(1,AT1)
DIMENSION ROW2(1,AT2),U11(AT1,1),U12,1,15),U13(1,15)

CALL MCOIAS(A2,XN1,Q1,N1,K,1,AT2,15)

In subroutine CALCFG:

COMMON/ONE/A(AT1,15),A2(AT2,15),A3(AT3,15),A1(AT4,15),NSAMPL,N1,N1A,K,N4B
DIMENSION XN1(15,1),Q1(AT2,1),U6(AT1,1),U9(AT1,1),ROW1(1,AT1)
DIMENSION ROW2(1,AT2),U11(AT1,1),U12,1,15),U13(1,15)

CALL MCOIAS(A2,XN1,Q1,N1,K,1,AT2,15)

CALL MCOIAS(A,XN1,06,NSAMPL,K,1,AT1,15)
CALL MATNW(ROW1,U11,U12,1,NSAMPL,K,1,AT1,1)
CALL MATNW(ROW2,A2,15,1,NSAMPL,K,1,AT2,1)

Appendix 2(c)

The following are the card changes necessary in the program listed in Table 7 when NSAMPL=AT1, N1=AT2, N2B=AT3 and (NSAMPL-N2B-N1)=AT4.

In main part of program:

COMMON/ONE/A(AT1,15),A2(AT2,15),A3(AT3,15),A1(AT4,15),NSAMPL,N1,N1A,K,N4B

In subroutine SURF:

COMMON/ONE/A(AT1,15),A2(AT2,15),A3(AT3,15),A1(AT4,15),NSAMPL,N1,N1A,K,N4B
DIMENSION XN1(15,1),Q1(AT2,1),U6(AT1,1),U9(AT1,1),ROW1(1,AT1)
DIMENSION ROW2(1,AT2),U11(AT1,1),U12,1,15),U13(1,15)

DIMENSION PROB1(AT1),PROB2(AT1),PROB4(AT1),U21(15,1),U22(15,1)
The following are the card changes necessary in the program listed in Table 8 when NSAMPL=AT1, N1=AT2, N2B=AT3, N3B=AT4 and (NSAMPL-N3B-N2B-N1) =AT5.

DIMENSION QZA(AT1,1),QZB(AT1,1),W(1981),PESTS2(30)
CALL MCOIAS(A,XZ1,QZA,NSAMPL,K,1,AT1,15,AT1)
CALL MCOIAS(A,XZ2,QZB,NSAMPL,K,1,AT1,15,AT1)

In subroutine CALCFG:
COMMON/ONE/A(AT1,15),A2(AT2,15),A3(AT3,15),A1(AT4,15),NSAMPL,N1,N2

DIMENSION XN1(15,1),XN2(15,1),Q1(AT2,1),Q2(AT3,1)
DIMENSION U6(AT1,1),U7(AT1,1),U9(AT1,1)
DIMENSION ROW1(1,AT1),ROW2(1,AT2),ROW3(1,AT3)
DIMENSION U11(AT1,15),U12(1,15),U13(1,15),U18(1,15)
CALL MCOIAS(A2,XN1,Q1,N1,K,1,AT2,15,AT2)
CALL MCOIAS(A3,XN2,Q2,N2B,K,1,AT3,15,AT3)
CALL MCOIAS(A,XN1,U6,NSAMPL,K,1,AT1,15,AT1)
CALL MCOIAS(A,XN2,U7,NSAMPL,K,1,AT1,15,AT1)
CALL MATNW(ROW1,U11,U12,1,NSAMPL,K,1,AT1,1)
CALL MATNW(ROW3,A2,U13,1,N1,K,1,AT2,1)

In main part of program:
COMMON/ONE/A(AT1,15),A2(AT2,15),A3(AT3,15),A4(AT4,15),A1(AT5,15),N

In subroutine SURF:
COMMON/ONE/A(AT1,15),A2(AT2,15),A3(AT3,15),A4(AT4,15),A1(AT5,15),N

DIMENSION C10(AT1),C11(AT1),C12(AT1),C13(AT1)
DIMENSION PROB1(AT1),PROB2(AT1),PROB3(AT1),PROB4(AT1)
DIMENSION QZA(AT1,1),QZB(AT1,1),QZC(AT1,1),TSTAT(45),STER(45)
CALL MCOIAS(A,XZ1,QZA,NSAMPL,K,1,AT1)
CALL MCOIAS(A,XZ2,QZB,NSAMPL,K,1,AT1)
CALL MCOIAS(A,XZ3,QZC,NSAMPL,K,1,AT1)

In subroutine CALCFG:
COMMON/ONE/A(AT1,15),A2(AT2,15),A3(AT3,15),A4(AT4,15),A1(AT5,15),N

DIMENSION X(45),G(45),Q1(AT2,1),Q2(AT3,1),Q3(AT4,1)
DIMENSION U6(AT1,1),U7(AT1,1),U8(AT1,1),U9(AT1,1)
DIMENSION ROW1(1,AT1),ROW2(1,AT2),ROW3(1,AT3),ROW4(1,AT4)
DIMENSION U11(AT1,15),U12(1,15),U13(1,15),U18(1,15),U23(1,15)
CALL MCOIAS(A2,XN1,Q1,N1,K,1,AT2,15,AT2)
CALL MCOIAS(A3,XN2,Q2,N2B,K,1,AT3,15,AT3)
CALL MCOIAS(A4,XN3,Q3,N3B,K,1,AT4,15,AT4)
CALL MCOIAS(A,XN1,U6,NSAMPL,K,1,AT1,15,AT1)
CALL MCOIAS(A,XN2,U7,NSAMPL,K,1,AT1,15,AT1)
CALL MCOIAS(A,XN3,U8,NSAMPL,K,1,AT1,15,AT1)
CALL MATNW(ROW1,U11,U12,1,NSAMPL,K,1,AT1,1)
CALL MATNW(ROW3,A2,U13,1,N1,K,1,AT2,1)
CALL MATNW(ROW4,A3,1,15,AT3,1)

**** READ IN VERT-LINEWIDTH OF PROBABILITY SURFACE MAP REQUIRED IN INCHES. VID-WIDTH IN INCHES. REFC=VALUE OF REFERENCE CONTOUR, CINT=CONTOUR INTERVAL. UMAX,UMIN MAXIMUM AND MINIMUM ALONG HORIZONTAL AXES AND VMAX,VMIN MAXIMUM AND MINIMUM ALONG VERTICAL AXES.

Table 8

<table>
<thead>
<tr>
<th>NSAMPL</th>
<th>N1</th>
<th>N2</th>
<th>N3B</th>
<th>N3A</th>
<th>N2A</th>
<th>N1A</th>
<th>N2A</th>
<th>N3A</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>88</td>
<td>10</td>
<td>53</td>
<td>27</td>
<td>18</td>
<td>96</td>
<td>10</td>
<td>58</td>
</tr>
<tr>
<td>101</td>
<td>90</td>
<td>10</td>
<td>55</td>
<td>25</td>
<td>18</td>
<td>98</td>
<td>10</td>
<td>58</td>
</tr>
<tr>
<td>102</td>
<td>91</td>
<td>10</td>
<td>56</td>
<td>24</td>
<td>18</td>
<td>99</td>
<td>10</td>
<td>58</td>
</tr>
<tr>
<td>103</td>
<td>92</td>
<td>10</td>
<td>57</td>
<td>23</td>
<td>18</td>
<td>100</td>
<td>10</td>
<td>58</td>
</tr>
</tbody>
</table>

START OF MAIN LOOP

START OF MAIN LOOP
GENERALISED NEWTON METHOD

FOLLOWING ARBITRARILY SETS THE ITERATION INSTRUCTIONS

```
MAXFUN = 2800
IPRINT = 2
IF(IORD.EQ.8) GO TO 9650
BZ = FLOAT(OORD)
821 = DBLE(O2*8.85)
STEP = B21 + 0.83D8
IF(IORD.EQ.1) ACC = 8.24D8
IF(IORD.EQ.2) ACC = 8.48D8
IF(IORD.EQ.3) ACC = 8.24D8
GO TO 9651
9658
STEP = 8.86D0
ACC = 8.88D0
```

CALCULATE NUMBER OF PARAMETERS

```
k = (10*RD+1)*(10*RD+2))/2
N.K = 3
N1 = N1 + 1
N2 = N2B + N1
N2A = N1 + 1
N3 = N3B + N2
N3A = N2 + 1
N = N1 + N2A + 1
```

GENERATE ARBITRARY INITIAL PARAMETER ESTIMATES

```
IF(IORD.EQ.8) GO TO 9652
X(1) = 8.1D8
DO 2 I = 11, N
X(I) = 8.1D8
X(I) = 0.1D0
GO TO 9654
```

GENERATE POLYNOMIAL TERMS

```
KD = IORD - 1
KDA = ((KD + 1)*(KD + 2))/12
KD = KDA + 1
K = (KE + 1)*(KE + 2))/12
KE = (KE + 1)*2
DO 13 I = 1, NSAMPL
A(I,1) = A(I,1)*A(I,1)
A(I,1) = A(I,1)/4
DO 14 I = 1, N
X2(I,1) = SNGL(X(I))
X2(I,1) = SNGL(X(I))
DO 15 I = 1, N
X2(I,1) = SNGL(X(I))
DO 16 I = 1, N
X2(I,1) = SNGL(X(I))
DO 17 I = 1, N
X2(I,1) = SNGL(X(I))
DO 18 I = 1, N
X2(I,1) = SNGL(X(I))
```

CALCULATE PARAMETER ESTIMATES

```
DO 5 I = 1, N
A(I,1) = A(I,1) / 2
```

COMPUTE AND PRINT ESTIMATED PROBABILITIES AND RESIDUALS

```
CALL MC0IAS(A, X21, 4ZA, NSAMPL, K, 1, 258, 15, 258)
CALL MC0IAS(A, X22, 0ZB, NSAMPL, K, 1, 258, 15, 258)
CALL MC0IAS(A, X23, 122C, NSAMPL, K, 1, 258, 15, 258)
DO 630 I = 1, NSAMPL
RZA(I) = EXP(4ZA(I,1))
DO 630 I = 1, NSAMPL
RZA(I) = EXP(4ZA(I,1))
```

RETURN

```
RETURN
```

WRITE

```
WRITE(6,6009) N, PROB(1), PROB(2), PROB(3)
```

END
SUBROUTINE CALCFG(N,X,F,G)
DOUBLE PRECISION X(N),F,G
DIMENSION U6(258,1),U7(258,1),U8(258,1),U9(250,1)
DIMENSION R001(1,258),ROV2(1,108),ROW3(1,180),ROG4(1,100)
DIMENSION U11(258,15),U12(1,15),U13(1,15),U14(1,15),U15(1,15),U16(1,15)
DO 66 I=1,K
66 XN10.1)PSNOL(X(I))
DO 67 I=K+1,102
67 XN20.1)=SNDL(X(I))
DO 68 I=1,102
68 U6(I)=U6(I)+U7(I)
DO 69 I=1,102
69 U8(I)=U8(I)+U9(I)
DO 70 I=1,102
70 U11(I)=U11(I)+U12(I)
DO 71 I=1,102
71 U13(I)=U13(I)+U14(I)
DO 72 I=1,102
72 U15(I)=U15(I)+U16(I)
DO 73 I=1,102
73 U17(I)=U17(I)+U18(I)
DO 74 I=1,102
74 U19(I)=U19(I)+U20(I)
DO 75 I=1,102
75 U21(I)=U21(I)+U22(I)
DO 76 I=1,102
76 U23(I)=U23(I)+U24(I)
DO 77 I=1,102
77 U25(I)=U25(I)+U26(I)
DO 78 I=1,102
78 U27(I)=U27(I)+U28(I)
DO 79 I=1,102
79 U29(I)=U29(I)+U30(I)
DO 80 I=1,102
80 U31(I)=U31(I)+U32(I)
DO 81 I=1,102
81 U33(I)=U33(I)+U34(I)
DO 82 I=1,102
82 U35(I)=U35(I)+U36(I)
DO 83 I=1,102
83 U37(I)=U37(I)+U38(I)
DO 84 I=1,102
84 U39(I)=U39(I)+U40(I)
DO 85 I=1,102
85 U41(I)=U41(I)+U42(I)
DO 86 I=1,102
86 U43(I)=U43(I)+U44(I)
DO 87 I=1,102
87 U45(I)=U45(I)+U46(I)
DO 88 I=1,102
88 U47(I)=U47(I)+U48(I)
DO 89 I=1,102
89 U49(I)=U49(I)+U50(I)
DO 90 I=1,102
90 U51(I)=U51(I)+U52(I)
DO 91 I=1,102
91 U53(I)=U53(I)+U54(I)
DO 92 I=1,102
92 U55(I)=U55(I)+U56(I)
DO 93 I=1,102
93 U57(I)=U57(I)+U58(I)
DO 94 I=1,102
94 U59(I)=U59(I)+U60(I)
DO 95 I=1,102
95 U61(I)=U61(I)+U62(I)
DO 96 I=1,102
96 U63(I)=U63(I)+U64(I)
DO 97 I=1,102
97 U65(I)=U65(I)+U66(I)
DO 98 I=1,102
98 U67(I)=U67(I)+U68(I)
DO 99 I=1,102
99 U69(I)=U69(I)+U70(I)
DO 100 I=1,102
100 U71(I)=U71(I)+U72(I)
DO 101 I=1,102
101 U73(I)=U73(I)+U74(I)
END

SUBROUTINE PMAP(NL,NC,PESTSI/PESTS2/PESTS3,WORK,REFC,CINT,UAX,YAX/N,IORD)
DOUBLE PRECISION N,X,NSAMPL,PESTS1/PESTS2/PESTS3,WORK,REFC,CINT,UAX,YAX/N,IORD
SUBROUTINE PMAP(NLAC,PESTS1,PESTS2,PESTS3,WORK,REFC,CINT,UAX,VAX)

DIMENSION PESTS1(N),PESTS2(N),PESTS3(N),WORK(N)

DATA SYMB/IN1,1H.11H2,1H.,1H311N.,1H411N.1H5,1H.6,1H.7,1H.8,1H.9,1H.10,1N.,111111111N.,IN9,11.,IN8,1H.11/*1/1

FORMAT(' PROBABILITY SURFACE OF ORDER ',I8/' PART',I4//'')

FUNCTION PROB(PESTS1,PESTS2,PESTS3,WORK,N,NORD,U,V,J2)

DIMENSION PESTS1(N),PESTS2(N),PESTS3(N),WORK(N)

DATA SYMB/IN1,1H.11H2,1H.,1H311N.,1H411N.1H5,1H.6,1H.7,1H.8,1H.9,1H.10,1N.,111111111N.,IN9,11.,IN8,1H.11/*1/1

FORMAT(' PROBABILITY SURFACE OF ORDER ',I8/' PART',I4//'')

FUNCTION PROB(PESTS1,PESTS2,PESTS3,WORK,N,NORD,U,V,J2)
Derivation of the standard errors and variance-covariance matrix of parameter estimates

When the method of maximum likelihood is used to compute the parameter estimates, the asymptotic variance-covariance matrix is given by the inverse of the so-called 'information matrix', \(I(\hat{\theta}) \) \[2\] where

\[
I(\hat{\theta}) = -E \left[\frac{\partial^2 \log L}{\partial \theta \partial \theta'} \right]^{-1}
\]

and is consistently estimated by \(I(\hat{\theta}) \). \(\hat{\theta} \) in this case is a vector of parameters, e.g. \(\theta' = \alpha, \beta_1, \beta_2, \ldots \). The programs listed in Tables 6, 7 and 8 print both the asymptotic variance-covariance matrix of parameter estimates and the asymptotic standard errors found by taking square roots of the diagonal of \(I^{-1}(\hat{\theta}) \).
20 FORMAT(/'5X,'VA86AD HAS MADE',I5,' CALLS OF CALCFG')
21 IF (ITEST) 22,22,25
22 ITEST=ITEST-1
23 PRINT 23 MAXC F
24 PRINT 15,(K(I),I=1,N)
25 IF (IPRINT) 22,22,26
26 TEST WHETHER A SPECIAL ITERATION IS NEEDED AND CALCULATE THE CHANGE IN GRADIENT ALONG THE DIRECTION OF A SPECIAL ITERATION
27 (ITSPEC) 26,32,37
28 DOGG=DGG+DGG+SUM+SUM
29 PRINT THE CURRENT BEST VALUE OF F ETC
30 IF (ITEST) 22,22,25
31 THE SET OPTIMAL STEEPEST DESCENT CORRECTION IN WB AND THE DIFFERENCE BETWEEN WA AND WB IN WC
32 IF (ITSPEC) 26,32,37
33 TEST WHETHER TO SET THE CORRECTION TO A MULTIPLE OF THE GRADIENT
34 DOGGS=DGG+DGG+SUM+SUM
KDD=KDD+1
NW38=J+IWC
NW31=IWB+KK+1
W(NW38)=1,1(NW38)+W(NW31)*W(KDD)
NW32=KDD-H
W(KDD)=CA*W(HW32)-C8*W(NW30)
GO TO 45
48 KDD=IDD
DO 49 I=2,14
DO 49 J=1,14
KDD=KDD+1
NW33=KDD+N49 W(KDD)=W(NW33)
C=1.D8/DSORT(DSQ)
DO 58 I1,14
.KDD=KDD+1
NW34=1+IWA
58 W(KDD)=C*W(NW34)
C APPLY THE CORRECTION VECTOR AND CHECK WHETHER
C ROUND OFF MAKES THE CORRECTION ZERO
51 DSQ=0.DO
DO 52 I=1,N
NW35=1+IXA
NW36=I+IWA
W(NW35)=X(I)+W(NW36)
W(NW36)=W(NW35)-X(I)
52 DSQ=DSQ+W(NW36)**2
IF (DSQ) 80,80,80
88 PRINT 81
81 FORMAT ('SX,'ERROR EXIT FROM VA$36AD')
GO TO 11
C CALCULATE THE NEXT VALUE OF THE OBJECTIVE FUNCTION
82 MAXC=MAXC+1
C NOTE THAT THE NEXT INSTRUCTION IS NOT STANDARD FORTRAN
NW108=IXA+1
NW101=1GA+1
CALL CALCFG(N,W(NW100),FA,W(NW101))
C SET THE ERROR OF THE PREDICTED GRADIENT IN WB
C ALSO CALCULATE SOME NUMBERS FOR REVISING THE STEP-BOUND
DG=0.DO
DGA.O.D0
DG=0.DO
DSQ=0.DO
DSQ=0.DO
DO 54 I=1,N
SUM=0.DO
J=1
K=1
111 IF (J-I) 112,113,113
112 NW37=J+IWA
SUM=SUM+W(K)*W(NW37)
K=K+N-1
J=J+1
GO TO 111
113 DO 53 J=I,N
NW38=J+IWA
SUM=SUM+W(K)*W(NW38)
53 K=K+1
NW39=J+IWB
NW40=J+IGA
NW41=J+IWA
W(NW39)=W(NW48)-G(I)-SUM
DG=DG+G(I)*W(NW41)
DGA=DGA+W(14440)*W(NW41)
DGGD=DGGD+SUM*W(NW41)
54 WBSQ=WBSQ+W(NW39)**2
IF (ITSPEC-2) 55,68,60
C CHECK WHETHER ROUND OFF ERRORS ARE SERIOUS
55 C=WBSQ-0.25D0*GSQ
56 IF (DG-DGA-DGA) 68,59,59
57 DSS=DSQ
IF (WBSQ-0.25D0*GSQ) 59,59,59
58 IF (DG>DG) 68,59,59
59 DSS=4.D0*DSQ
C TEST WHETHER THE USUAL CORRECTION TO GG GIVES
C NEAR SINGULARITY
HDISI=SEG*DND-GHD*GHD
GO TO (67,70),ITHETA
67 IF (DABS(HDISI)-8.1DO*DSQ*DSQ) 68,78,78
C CHANGE THE DIFFERENCE IN GRADIENTS TO AVOID SINGULARITY
CA=1011//(DSQ*DSQ)+0.1D0
CB=GHD/DSQ-8.1811
CA=CA/(CA+CB+DSIGN(DSORT(0.9D8*CA+CB*C8)
C13=(1.D0-CA)*SDM/DSQ
DO 69 I=1,N
NW61=I+IWANW62=I+IWCC=CA*(CB*W(N6168)-D(NW61))
W(NW61)=111(1W61)+C
69 W(NW62)=W(NW62)+C
ITHETA=2
GO TO 64
C TEST WHETHER THE USUAL CORRECTION TO GG GIVES
C NEAR SINGULARITY
HDISI=SEG*DND-GHD*GHD
GO TO (67,70),ITHETA
67 IF (DABS(HDISI)-8.1DO*DSQ) 68,78,78
C CHANGE THE DIFFERENCE IN GRADIENTS TO AVOID SINGULARITY
CA=1011//(DSQ*DSQ)+0.1D0
CB=GHD/DSQ-8.1811
CA=CA/(CA+CB+DSIGN(DSORT(0.9D8*CA+CB*C8)
CA=CA)
C13=(1.D0-CA)*SDM/DSQ
DO 69 I=1,N
NW51=I+IWANW52=I+IWB
NW53=I+IZIA
NW54=I+IWA
W(NW51)=W(NW54)+G(I)*W(NW53)
W(NW54)=W(NW51)-G(I)
69 IF (I-I) 67,68,60
C REVISE THE MATRICES GG AND H
CA=1.80/DSQ
CB=DSQ*DSQ
CC=HDH/DIV
CD=DSQ*DSQ
CE=5*HDH/DIV
K=0
DO 71 I=1,N
DO 71 I=1,N
K=K+1
NW63=I+IWA
NW64=I+110
NW65=I+IWB
NW66=I+110
NW67=I+110
SUBROUTINE MCBIAS(A, B, C, L, M, N, IDA, IDB, IDC)
DOUBLE PRECISION DA, DB, SUM, DBLE
DIMENSION A(IDA, IDB), B(IDB, N), C(IDC, N)
L1 = L
M1 = M
I2 = 1
I3 = 1
DO 1 1 = M1, L1
DO 2 J = 1, L1
SUM = 0.888
DA = DBLE(A(I1, K))
DB = DBLE(B(K, J))
SUM = SUM + DA*DB
C(I1, J) = SNGLCSUM
1 CONTINUE
RETURN
END

SUBROUTINE MATN11(V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11)
DOUBLE PRECISION DY1, DY2, V3, VSUM, DBLE
DIMENSION Y1(1Y4, 1Y4), Y2(1Y5, 1Y5), V3(1Y6, 1Y6)
I1 = I1
I2 = I2
I3 = I3
D1 = I2
D2 = I3
DO 1 1 = 1, L1
DO 2 J = 1, L2
VSUM = 0.888
D1 = DBLE(V1(I1, K))
D2 = DBLE(Y1(J, K))
VSUM = VSUM + D1*V2
1 CONTINUE
V3(I1, J) = VSUM
RETURN
END